Forward Scattering Signature of a Spherical Particle Crossing a Laser Beam out of the Beam Waist

  • J-P. Chevaillier
  • J. Fabre
  • P. Hamelin
  • J-L. Lesne


The development of optical methods for the measurement of particle size, presents a great interest in many different industrial and scientific areas concerned with dispersed two phase flows. For the simplest case of spherical particles, several methods1,2,3,4 using the detection of light intensity scattered by particles crossing a laser beam have been realized to permit an “in situ” measurement of size and velocity simultaneously. However, solutions proposed to solve the problem of trajectory ambiguity induced by the gaussian intensity distribution of laser beams, lead generally to the design of expensive devices1,2,3.


Gaussian Beam Particle Trajectory Beam Axis Beam Waist Laser Doppler Anemometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.L. Yeoman, H.J. White, B.J. Azzopardi, C.J. Bates, P.J. Roberts, Optical development and application of two colors L.D.A. system for simultaneous measurement of particle size and velocity, Report AERE R 10458 Harwell, (1982)Google Scholar
  2. 2.
    G. Gouesbet, G. Grehan, R. Kleine, Simultaneous optical measurement of velocity and size of individual particle in flow, Proceedings of the Int. Symp. on Application of Laser Doppler Anemometry to Fluid Mechanics, Lisbon, (July 2–5, 1984)Google Scholar
  3. 3.
    K. Bauckhage, H.H. Floegel, Simultaneous measurement of droplet size and velocity in nozzle sprays. Proceeding of the Int. Symp. on Application of Laser Doppler Anemometry to Fluid Mechanics, Lisbon, (July 2–5, 1984)Google Scholar
  4. 4.
    R. Semiat, A.E. Dukler, Simultaneous measurement of size and velocity of bubbles and drops: a new optical technique, AIChE Journal, vol.27, no 1, pp.148–159, (1981)CrossRefGoogle Scholar
  5. 5.
    J.N. Lecomte, In situ bubble sizing using a reference beam laser doppler anemometer, Proceedings of the Symposium in long range and short range optical velocity measurements, Saint-Louis, (September 15–18, 1980)Google Scholar
  6. 6.
    G. Gouesbet, G. Grehan, Sur la généralisation de la théorie de Lorentz-Mie, J. Optics, Paris, V.13, no 97, (1982)Google Scholar
  7. 7.
    W.G. Tarn, R. Corriveau, Scattering of electromagnetic beams by spherical objects, J. Opt. Soc. Am., 68, 763, (1978)CrossRefGoogle Scholar
  8. 8.
    P. Hamelin, Application de la diffusion lumineuse à la métrologie des particules en écoulement diphasique dispersé, Thèse, Institut National Polytechnique de Toulouse, published in Bulletin de la Direction des Etudes et Recherches d’Electricité de France, série A, no 3/4 (1986)Google Scholar
  9. 9.
    J.P. Chevaillier, J. Fabre, P. Hamelin, Scattering properties of spherical particles situated in a laser beam and application for sizing, Bradford, Particle Size Analysis Conference (September 1985)Google Scholar
  10. 10.
    J.P. Chevaillier, J. Fabre, P. Hamelin, Forward scattered light intensities by a sphere located anywhere in a gaussian beam, Applied Optics, vol.25, no 7, pp.1222–1225, (1986)CrossRefGoogle Scholar
  11. 11.
    J.P. Chevaillier, Signature lumineuse de particules sphériques en faisceau gaussien, Rapport IMFT/EME no 284, (Février 1987)Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • J-P. Chevaillier
    • 1
  • J. Fabre
    • 1
  • P. Hamelin
    • 1
  • J-L. Lesne
    • 2
  1. 1.Institut de Mécanique des Fluides de ToulouseToulouse CedexFrance
  2. 2.Direction des Etudes et RecherchesElectricité de FranceSaint DenisFrance

Personalised recommendations