Particle Sizing by Laser Light Diffraction : Improvements in Optics and Algorithms

  • D. Kouzelis
  • S. M. Candel
  • E. Esposito
  • S. Zikikout


Many industrial processes like combustion of kerosene in gas turbines, production of cement, medical aerosols, insecticide sprays etc, involve the measurement and control of particle size distribution.


Inversion Method Droplet Size Distribution Conjugate Gradient Algorithm Number Size Distribution Medical Aerosol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Tardieu, Développement d’une méthode optique de diffraction pour déterminer les tailles des gouttelettes dans un jet pulvérisé, Thèse de Docteur-Ingénieur, Ecole Centrale des Arts et Manufactures, Paris, 1983.Google Scholar
  2. 2.
    A. Tardieu, S.M. Candel, Droplet size distribution from diffracted light intensities, Proc. of 9th Intern. AIAA Progr. in Astronaut. and Aeronaut., Vol. 95, P. 736–749, 1984.Google Scholar
  3. 3.
    P. G. Felton, Measurements of particle/droplet size distribution by a laser diffraction technique, Proc. of 2th European Symp. on Particle Caracterisation, PARTEC, Nuremberg, 1979.Google Scholar
  4. 4.
    J. Swithenbank, J.M. Beer, D.S. Taylor, D. Abbot, and G.C. McGreath, A laser diagnostic technique for measurement of droplet and particle size distribution, AIAA 16: 79 (1976).Google Scholar
  5. 5.
    “Malvern particle sizer”, Series 1800 and 2600, Malvern Instruments, England.Google Scholar
  6. 6.
    L.P. Bayvel, A.R. Jones, “Electromagnetic scattering and its applications” Applied Science Publishers, London (1981).CrossRefGoogle Scholar
  7. 7.
    M. Kerker, “The scattering of light”, Academic Press, New York (1969).Google Scholar
  8. 8.
    G. Goodman, “Introduction to Fourier optics”, Mc Graw Hill (1968).Google Scholar
  9. 9.
    E. Hecht and A. Zajac, “Optics”, Addison-Wesley Publishing Co (1974).Google Scholar
  10. 10.
    G. Horlick, Caracteristics of photodiode arrays for spectrochemical measurements, Appl. Spectroscopy 30, no 2 (1976).Google Scholar
  11. 11.
    S. Twomey, “Introduction to the mathematics of inversion in remote sensing and indirect measurements”, Elsevier Publ. Co, New York (1977).Google Scholar
  12. 12.
    E. Stiefel, “Einfuhrung in die numerische mathematik”, B.G. Teubner Verlagsgesellschaft, Stutgard.Google Scholar
  13. 13.
    J.H. Chin, C.M. Sliepcevich, M. Tribus, Particle size distribution from angular variation of intensity of forward scattering light at very small angles, J. Chem. Phys. 59: 841 (1955).CrossRefGoogle Scholar
  14. 14.
    K.S. Shifrin, A. Ya. Pelerman, Opt. Spectr. (URSS) 15: 285–9 (english transi. 1963).Google Scholar
  15. 15.
    Proc. of the 2th Intern. Conf. on Liquid Atomization and Spray Systems, June 20–24, Madison, Wisconsin, USA (1982).Google Scholar
  16. 16.
    J. Cornillault, Particle size analyser, Appl. Optics 11: 265 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • D. Kouzelis
    • 1
  • S. M. Candel
    • 1
    • 2
  • E. Esposito
    • 1
  • S. Zikikout
    • 1
  1. 1.Laboratoire E.M2.C du CNRS et de l’ECPEcole Centrale des Arts et ManufacturesChâtenay-Malabry CedexFrance
  2. 2.ONERAChatillonFrance

Personalised recommendations