Advertisement

Particle Sizing of Polydisperse Samples by Mie-Scattering

  • Otto Glatter
  • Michael Hofer

Abstract

A procedure for the computation of size distributions of polydisperse systems from elastic light scattering data is presented. Precise solutions are obtained if the shapes of the particles are known, if the size can be expressed by a single parameter and if it is possible to calculate the shape factor Ф (h, m, R) for the particles, as it is the case for spheres and spheroids. The method is not restricted with respect to the range of the refractive index m. However, wrong estimates for this index lead to severe errors in the results. Approximate solutions can be found for different globular particles by an evaluation as a distribution of spheres. The range of applicability of the method depends on the experimental set-up, but is in most cases in the size range from 100 nanometers to several microns, i.e., it lies in the gap between X-ray or neutron small-angle scattering and Fraunhofer diffraction. The inverse scattering problem is solved with the modified Indirect Fourier Transform method representing the solution as a series of equidistant cubic B-splines. The regularization method incorporated in the procedure uses a stabilization parameter that can be determined directly from the data. The solution is nearly free from oscillations typical for ill-conditioned problems and it is largely independent of the actual number of splines. A series of simulated experiments is used to show the merits and limitations of the method.

Keywords

Real Space Full Line Nonspherical Particle Prolate Ellipsoid Polydisperse System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Glatter, M. Hofer, Ch. Jorde and W.-D. Eigner, Interpretation of Elastic Light Scattering Data in Real Space, J. Colloid Interface Sci., 105:577 (1985).CrossRefGoogle Scholar
  2. 2.
    O. Glatter and M. Hofer, Interpretation of Elastic Light Scattering Data in Real Space II: Nonspherical and Inhomogeneous Monodisperse Systems, J. Colloid Interface Sci., In Press.Google Scholar
  3. 3.
    O. Glatter, Data Evaluation in Small Angle Scattering: Calculation of the Radial Electron Density Distribution by Means of Indirect Fourier Transformation, Acta Physica Austr., 47:83 (1977).Google Scholar
  4. 4.
    O. Glatter, A New Method for the Evaluation of Small-Angle Scattering Data, J. Appl. Cryst., 10:415 (1977).CrossRefGoogle Scholar
  5. 5.
    O. Glatter, Evaluation of Small-Angle Scattering Data from Lamellar and Cylindrical Particles by the Indirect Transformation Method, J. Appl. Cryst., 13:577 (1980).CrossRefGoogle Scholar
  6. 6.
    O. Glatter, Data Treatment and Interpretation, In: “Small Angle X-ray Scattering,” O. Glatter and O. Kratky eds., Academic Press, London (1982).Google Scholar
  7. 7.
    O. Glatter, The Interpretation of Real-Space Information from Small-Angle Scattering Experiments, J. Appl. Cryst., 12:166 (1979).CrossRefGoogle Scholar
  8. 8.
    B. Chu, “Laser Light Scattering,” Academic Press, New York (1974).Google Scholar
  9. 9.
    B.E. Dahneke, “Measurements of Suspended Particles by Quasi-Elastic Light Scattering,” Wiley & Sons, New York (1983).Google Scholar
  10. 10.
    R. Pecora, “Dynamic Light Scattering,” Plenum, New York (1985).CrossRefGoogle Scholar
  11. 11.
    L.P. Bayvel and A.R. Jones. “Electromagnetic Scattering and its Applications,” Applied Science Publ., London (1981).CrossRefGoogle Scholar
  12. 12.
    O. Glatter, Determination of Particle Size Distribution Functions from Small-Angle Scattering Data by Means of the Indirect Transformation Method, J. Appl. Crtyst., 13:7 (1980).Google Scholar
  13. 13.
    G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys., 25:377 (1908).MATHCrossRefGoogle Scholar
  14. 14.
    M. Kerker, “The Scattering of Light and other Electromagnetic Radiation,” Academic Press, New York (1969).Google Scholar
  15. 15.
    P.W. Barber and C. Yeh, Scattering of electromagnetic waves by arbitrarily shaped bodies, Appl. Opt., 14:2864 (1975).CrossRefGoogle Scholar
  16. 16.
    P.W. Barber and D.-S. Wang. Rayleigh-Gans-Debye applicability to scattering by nonspherical particles, Appl. Opt., 17:797 (1978).CrossRefGoogle Scholar
  17. 17.
    D.-S. Wang and P.W. Barber, Scattering by inhomogeneous nonspherical objects, Appl. Opt., 18:1190 (1979).CrossRefGoogle Scholar
  18. 18.
    D.-S. Wang, C.H.H. Chen, P.W. Barber and P.J. Wyatt, Light scattering by polydisperse suspensions of inhomogeneous nonspherical particles, Appl. Opt., 18:2672 (1979).CrossRefGoogle Scholar
  19. 19.
    P.W. Barber, D.-S. Wang and M.B. Long, Scattering calculations using a microcomputer, Appl. Opt., 20:1121 (1981).CrossRefGoogle Scholar
  20. 20.
    O. Glatter and M. Hofer, Interpretation of Elastic Light Scattering Data in Real Space III: Determination of Size Distributions of Polydisperse Systems, J. Colloid Interface Sci., In Press.Google Scholar
  21. 21.
    M. Hofer “Analysis of Elastic Light Scattering from Preresonant Mie Particles in Real Space,” Thesis, University Graz (1987).Google Scholar
  22. 22.
    C. Yeh, S. Colak and P.W. Barber, Scattering of sharply focused beams by arbitrarily shaped dielectric particles: an exact solution, Appl. Opt., 21:4426 (1982).CrossRefGoogle Scholar
  23. 23.
    T.N.E. Greville, “Theory and Applications of Spline Functions”, Academic Press, New York (1969).MATHGoogle Scholar
  24. 24.
    J. Schelten and F. Hoßfeld, Applications of Spline Functions to the Correction of Resolution Errors in Small-Angle Scattering, J. Appl. Cryst., 4:210 (1971).CrossRefGoogle Scholar
  25. 25.
    O. Glatter and H. Greschonig, Approximation of Titration Curves and other Sigmoidal Functions by Proportionally spaced Cubic B-splines, Microchim. Acta, In Press.Google Scholar
  26. 26.
    S. Brandt, “Statistical and Computational Methods in Data Analysis,” North-Holland Publ. Comp., Amsterdam (1970).MATHGoogle Scholar
  27. 27.
    R. Bracewell, “Fourier Transform and its Applications,” McGraw Hill, New York (1965).MATHGoogle Scholar
  28. 28.
    C.L. Lawson and R.J. Hanson, “Solving Least Squares Problems,” Prentice-Hall, Englewood Cliffs N.J. (1974).MATHGoogle Scholar
  29. 29.
    P. Mittelbach and G. Porod, Zur Röntgenkleinwinkelstreuung verdünnter kolloidaler Systeme VII. Die Berechnung der Streukurven von dreiachsigen Ellipsoiden, Acta Physica Austr., 15:122 (1962).Google Scholar
  30. 30.
    M. Hofer, J. Schurz and O. Glatter, Determination of Particle Size Distributions of Oil-Water Emulsions by Elastic Light Scattering, In Preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Otto Glatter
    • 1
  • Michael Hofer
    • 1
  1. 1.Institut für Physikalische ChemieUniversität GrazGrazAustria

Personalised recommendations