Advertisement

Pathogenesis of Diabetic Glomerulopathy: A Biochemical View

  • Robert G. Spiro
Part of the Topics in Renal Medicine book series (TIRM, volume 6)

Abstract

Half a century has now elapsed since Kimmelstiel and Wilson described in diabetic glomeruli the distinctive periodic acid—Schiff (PAS)-reactive nodular deposits that bear their names [1]. Since that time, these initial observations have been extended and it has become evident that, although the nodular lesions are frequently not present, the diabetic glomerular disease is always characterized by basement thickening and mesangial expansion [2, 3]. Indeed it is believed that progressive accumulation of glomerular extracellular matrix is an important aspect of the defect that leads to proteinuria and ultimately to capillary occlusion with the loss of functioning filtration units.

Keywords

Basement Membrane Glomerular Basement Membrane Heparan Sulfate Proteoglycan Aldose Reductase Inhibitor Lamina Densa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kimmelstiel P, Wilson C: Intercapillary lesions in the glomeruli of the kidney. Am J Pathol 12: 83–98, 1936.PubMedGoogle Scholar
  2. 2.
    Kimmelstiel P, Kim OJ, Beres J: Studies on renal biopsy specimens, with the aid of the electron microscope. I. Glomeruli in diabetes. Am J Clin Pathol 38: 270–279, 1962.PubMedGoogle Scholar
  3. 3.
    Legg MA, Harawi SJ: The pathology of diabetes mellitus. In: Marble A, Krall LP, Bradley RF, Christlieb AR, Soeldner JS (eds) Joslin’s diabetes mellitus, 12th edn. Philadelphia: Lea and Febiger, 1985, pp 298–331.Google Scholar
  4. 4.
    Spiro RG: Search for a biochemical basis of diabetic microangiopathy. Diabetologia 12: 1–14, 1976.PubMedCrossRefGoogle Scholar
  5. 5.
    Mohan PS, Spiro RG: Macromolecular organization of basement membranes: characterization and comparison of glomerular basement membrane and lens capsule components by immunochemical and lectin affinity procedures. J Biol Chem 261: 4328–4336, 1986.PubMedGoogle Scholar
  6. 6.
    Shimomura H, Spiro RG: Studies on the macromolecular components of human glomerular basement membrane and alterations in diabetes: decreased levels of heparan sulfate proteoglycan and laminin. Diabetes 36: 374–381, 1987.PubMedCrossRefGoogle Scholar
  7. 7.
    Scott PG: Macromolecular constituents of basement membranes: a review of current knowledge on their structure and function. Can J Biochem Cell Biol 61: 942–948, 1983.PubMedCrossRefGoogle Scholar
  8. 8.
    Timpl R, Wiedemann H, Van Delden V, Furthmayer H, Kuhn K: A network model for the organization of type IV collagen molecules in basement membranes. Eur J Biochem 120: 203–211, 1981.PubMedCrossRefGoogle Scholar
  9. 9.
    Sato T, Spiro RG: Studies on the subunit composition of the renal glomerular basement membrane, J Biol Chem 251: 4062–4070, 1976.PubMedGoogle Scholar
  10. 10.
    Spiro RG: The structure of the disaccharide unit of the renal glomerular basement membrane. J Biol Chem 242: 4813–4823, 1967.PubMedGoogle Scholar
  11. 11.
    Levine MJ, Spiro RG: Isolation from glomerular basement membrane of a glycopeptide containing both asparagine-linked and hydroxylysine-linked carbohydrate units. J Biol Chem 254: 8121–8124, 1979.PubMedGoogle Scholar
  12. 12.
    Hudson BG, Spiro RG: Studies on the native and reduced alkylated renal glomerular basement membrane: solubility, subunit size and reaction with cyanogen bromide. J Biol Chem 247: 4229–4238, 1972.PubMedGoogle Scholar
  13. 13.
    Parthasarathy N, Spiro RG: Isolation and characterization of the heparan sulfate proteoglycan of the bovine glomerular basement membrane. J Biol Chem 259: 12749–12755, 1984.PubMedGoogle Scholar
  14. 14.
    Edge AE, Spiro RG: Selective deglycosylation of the heparan sulfate proteoglycan of bovine glomerular basement membrane and identification of the core protein. J Biol Chem 262: 6893–6898, 1987.PubMedGoogle Scholar
  15. 15.
    Parthasarathy N, Spiro RG: Characterization of the glycosaminoglycan component of the renal glomerular basement membrane and its relationship to the peptide portion. J Biol Chem 256: 507–513, 1981.PubMedGoogle Scholar
  16. 16.
    Carlin B, Jaffe R, Bender B, Chung AE: Entactin, a novel basal lamina-associated sulfated glycoprotein, J Biol Chem 256: 5209–5214, 1981.PubMedGoogle Scholar
  17. 17.
    Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR: Laminin: a glycoprotein from basement membranes. J Biol Chem 254: 9933–9937, 1979.PubMedGoogle Scholar
  18. 18.
    Timpl R, Dziadek M, Fujiwara S, Nowack H, Wick G: Nidogen: a new, self-aggregating basement membrane protein. Eur J Biochem 137: 455–465, 1983.PubMedCrossRefGoogle Scholar
  19. 19.
    Hawthorne GC, MacLellan JR, Mythen M, Alberti KGMM, Turner GA: Studies on glomerular basement membrane in experimental diabetes using lectin histochemistry in Wistar rats. Diabetologia 29: 495–499, 1986.PubMedCrossRefGoogle Scholar
  20. 20.
    Peters BP, Goldstein IJ: The use of fluorescein-conjugated Bandeiraea sirnplicifolia B4-isolectin as a histochemical reagent for the detection of a-D-galactopyranosyl groups. Exp Cell Res 120: 321–334, 1979.PubMedCrossRefGoogle Scholar
  21. 21.
    Farquhar MG: The glomerular basement membrane: a selective macromolecular filter. In: Hay ED (ed) Cell biology of extracellular matrix. New York: Plenum, 1981, pp 335–378.CrossRefGoogle Scholar
  22. 22.
    Laurie GW, Leblond CP, Inoue S, Martin GR, Chung A: Fine structure of the glomerular basement membrane and immunolocalization of five basement membrane components to the lamina densa (basal lamina) and its extensions in both glomeruli and tubules of the rat kidney. Am J Anat 169: 463–481, 1984.PubMedCrossRefGoogle Scholar
  23. 23.
    Myndersee LA, Hassell JR, Kleinman HK, Martin GR, Martinez-Hernandez A: Loss of heparan sulfate proteoglycan from glomerular basement membrane of nephrotic rats. Lab Invest 48: 292–302, 1983.Google Scholar
  24. 24.
    Abrahamson DR: Post-embedding colloidal gold immunolocalization of laminin to the lamina rara interna, lamina densa, and lamina rara externa of renal glomerular basement membranes. J Histochem Cytochem 34: 847–853, 1986.PubMedCrossRefGoogle Scholar
  25. 25.
    Hewitt AT, Martin GR: Attachment proteins and their role in extracellular matrices. In Ivatt RJ (ed) The biology of glycoproteins. New York: Plenum, 1984, pp 65–93.CrossRefGoogle Scholar
  26. 26.
    Venkatachalam MA, Rennke HG: The structural and molecular basis of glomerular filtration. Circ Res 43: 337–347, 1978.PubMedCrossRefGoogle Scholar
  27. 27.
    Spiro RG, Parthasarathy N: Studies on the proteoglycans of basement membranes. In: Kuehn K, Schoene H, Timpl R (eds) New trends in basement membrane research. New York: Raven, 1982, pp 87–98.Google Scholar
  28. 28.
    Cammarata PR, Spiro RG: Identification of noncollagenous components of calf lens capsules: evaluation of their adhesion-promoting activity. J Cell Physiol 125: 393–402, 1985.PubMedCrossRefGoogle Scholar
  29. 29.
    Aumailley M, Timpl R: Attachment of cells to basement collagen type IV. J Cell Biol 103: 1569–1575, 1986.PubMedCrossRefGoogle Scholar
  30. 30.
    Spiro RG: Studies on the renal glomerular basement membrane: preparation and chemical composition. J Biol Chem 242: 1915–1922, 1967.PubMedGoogle Scholar
  31. 31.
    Carlson EC, Brendel L, Hjelle JT, Meezan E: Ultrastructural and biochemical analyses of isolated basement membranes from kidney glomeruli and tubules and brain and retinal micro-vessels. J Ultrastruct Res 62: 25–63, 1978.CrossRefGoogle Scholar
  32. 32.
    Houser MT, Scheinman JI, Basgen J, Steffes MW, Michael AF: Preservation of mesangium and immunohistochemically defined antigens in glomerular basement isolated by detergent extraction. J Clin Invest 69: 1169–1175, 1982.PubMedCrossRefGoogle Scholar
  33. 33.
    Huang TW: Basal lamina heterogeneity in the glomerular capillary tufts of human kidneys. J Exp Med 149: 1450–1459, 1979.PubMedCrossRefGoogle Scholar
  34. 34.
    Abrahamson DR, Perry EW: Evidence for splicing new basement membrane into old during glomerular development in newborn rat kidneys. J Cell Biol 103: 2489–2498, 1986.PubMedCrossRefGoogle Scholar
  35. 35.
    Kreisberg JI, Karnovsky MJ: Glomerular cells in culture. Kidney Int 23: 439–447, 1983.PubMedCrossRefGoogle Scholar
  36. 36.
    Price RG, Spiro RG: Studies on the metabolism of the renal glomerular basement membrane: turnover measurements in the rat with the use of radiolabeled amino acids. J Biol Chem 252: 8597–8602, 1977.PubMedGoogle Scholar
  37. 37.
    Sternberg M, Cohen-Forterre L, Peytroux J: Connective tissue in diabetes mellitus: biochemical alterations of the intercellular matrix with special reference to proteoglycans, collagens and basement membranes. Diabetes Metab 11: 27–50, 1985.Google Scholar
  38. 38.
    Beisswenger PJ, Spiro RG: Studies on the human glomerular basement membrane: composition, nature of the carbohydrate units and chemical changes in diabetes mellitus, Diabetes 22: 180–193, 1973.PubMedGoogle Scholar
  39. 39.
    Parthasarathy N, Spiro RG: Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes 31: 738–741, 1982.PubMedCrossRefGoogle Scholar
  40. 40.
    Klein L, Butcher DL, Sudilovsky O, Kikkawa R, Miller M: Quantification of collagen in renal glomeruli isolated from human nondiabetic and diabetic kidneys. Diabetes 24: 1057–1065, 1975.PubMedCrossRefGoogle Scholar
  41. 41.
    Trüeb B, Flückiger R, Winterhalter KH: Nonenzymatic glycosylation of basement membrane collagen in diabetes mellitus. Collagen Rel Res 4: 239–251, 1984.CrossRefGoogle Scholar
  42. 42.
    Dean DC, Barr JF, Freytag JW, Hudson BG: Isolation of type IV procollagen-like polypeptides from glomerular basement membrane: characterization of Pro-ai (IV). J Biol Chem 258: 590–599, 1983.PubMedGoogle Scholar
  43. 43.
    Brownlee M, Spiro RG: Glomerular basement membrane metabolism in the diabetic rat: in vivo studies. Diabetes 28: 121–125, 1979.PubMedCrossRefGoogle Scholar
  44. 44.
    Hasslacher C, Reichenbacher R, Gechter F, Timpl R: Glomerular basement membrane synthesis and serum concentration of type IV collagen in streptozotocin-diabetic rats,. Diabetologia 26:150–154, 1984Google Scholar
  45. 45.
    Khalifa A, Cohen MP: Glomerular protocollagen lysyl hydroxylase activity in streptozotocin diabetes. Biochim Biophys Acta 386: 332–339, 1975.PubMedCrossRefGoogle Scholar
  46. 46.
    Spiro RG, Spiro MJ: Effect of diabetes on the biosynthesis of the renal glomerular basement membrane: studies on the glucosyltransferase. Diabetes 20: 641–648, 1971.PubMedGoogle Scholar
  47. 47.
    Cohen MP, Surma ML: Effect of diabetes on in vivo metabolism of (3551-labeled glomerular basement membrane metabolism. Diabetes 33: 8–12, 1984.PubMedCrossRefGoogle Scholar
  48. 48.
    Brown DM, Klein DJ, Michael AF, Oegema TR: 35S-glycosaminoglycan and 35S-glycopeptide metabolism by diabetic glomeruli and aorta. Diabetes 31: 418–425, 1982.PubMedCrossRefGoogle Scholar
  49. 49.
    Klein DJ, Brown DM, Oegema TR: Glomerular proteoglycans in diabetes. Diabetes 35: 1130–1142, 1986.PubMedCrossRefGoogle Scholar
  50. 50.
    Spiro MJ: Sulfate metabolism in the diabetic rat: relationship of altered sulfate pools to proteoglycan sulfation in heart and other tissues. Diabetologia 30: 259–267, 1987.PubMedCrossRefGoogle Scholar
  51. 51.
    Brownlee M, Vlassara H, Cerami A: Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med 101: 527–537, 1984.PubMedGoogle Scholar
  52. 52.
    Cohen MP, Urdanivia E, Surma M, Wu VY: Increased glycosylation of glomerular basement membrane collagen in diabetes. Biophys Res Commun 95: 765–769, 1980.CrossRefGoogle Scholar
  53. 53.
    Garlick RL, Bunn HF, Spiro RG: Nonenzymatic glycation of basement membranes from human glomeruli and bovine sources: effect of diabetes and age. (Submitted for publication, 1987.)Google Scholar
  54. 54.
    Tchobroutsky G: Relation of diabetic control to development of microvascular complications. Diabetologia 15: 143–152, 1978.PubMedCrossRefGoogle Scholar
  55. 55.
    Hanssen KF, Dahl Jorgensen K, Lauritzen T, Feldt-Rasmussen B, Brinchmann-Hansen O, Deckert T: Diabetic control and microvascular complications: the near-normoglycaemic experience. Diabetologia 29: 677–684, 1986.PubMedCrossRefGoogle Scholar
  56. 56.
    Mauer SM, Steffes WM, Connett J, Najarian JS, Sutherland DER, Barbosa J: The development of lesions in the glomerular basement membrane and mesangium after transplantation of normal kidneys to diabetic patients. Diabetes 32: 948–952, 1983.PubMedCrossRefGoogle Scholar
  57. 57.
    Bohman SO, Tyden G, Wilczek H, Lundgren G, Jaremko G, Gunnarsson R, Östman J, Groth CG: Prevention of kidney graft diabetic nephropathy by pancreas transplantation in man. Diabetes 34: 306–308, 1985.PubMedCrossRefGoogle Scholar
  58. 58.
    Hosteter TH, Rennke HG, Brenner BM: The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med 72: 375–380, 1982.CrossRefGoogle Scholar
  59. 59.
    Steffes MW, Brown DM, Mauer SM: Diabetic glomerulopathy following unilateral nephrectomy in the rat. Diabetes 27: 35–41, 1978.PubMedCrossRefGoogle Scholar
  60. 60.
    Rosenstock J. Raskin P: Early diabetic nephropathy: assessment and potential therapeutic interventions. Diabetes Care 9: 529–545, 1986.PubMedCrossRefGoogle Scholar
  61. 61.
    Castellot JJ Jr, Hoover RL, Harper PA, Karnovsky MJ: Heparin and glomerular epithelial cell-secreted heparin-like species inhibit mesangial-cell proliferation. Am J Pathol 120: 427–435, 1985.PubMedGoogle Scholar
  62. 62.
    Steffes MW, Brown DM, Basgen JM, Matas AJ, Mauer SM: Glomerular basement membrane thickness following islet transplantation in the diabetic rat. Lab Invest 41: 116–118, 1979.PubMedGoogle Scholar
  63. 63.
    Gotzsche O, Gundersen HJG, C sterby R: Irreversibility of glomerular basement membrane accumulation despite reversibility of renal hypertrophy with islet transplantation in early experimental diabetes. Diabetes 30: 481–485, 1981.PubMedCrossRefGoogle Scholar
  64. 64.
    Cogan DG, Kinoshita JH, Kador PF, Robison G, Datilis MB, Cobo LM, Kupfer C: Aldose reductase and complications of diabetes. Ann Intern Med 101: 82–91, 1984.PubMedGoogle Scholar
  65. 65.
    Beyer-Mears A, Ku L, Cohen MP: Glomerular polyol accumulation in diabetes and its prevention by oral sorbinil. Diabetes 33: 604–607, 1984.PubMedCrossRefGoogle Scholar
  66. 66.
    Frank RN, Keim RJ, Kennedy A, Frank KW: Galactose-induced retinal capillary basement membrane thickening: prevention by sorbinil. Invest Ophthalmol Vis Sci 24: 1519–1524, 1983.PubMedGoogle Scholar
  67. 67.
    Robison WG Jr, Kador PF, Akagi Y, Kinoshita JH, Gonzales R, Dvornik D: Prevention of basement membrane thickening in retinal capillaries by a novel inhibitor of aldose reductase, tolrestat. Diabetes 35: 295–299, 1986.PubMedCrossRefGoogle Scholar
  68. 68.
    Chandler ML, Shannon WA, De Santis L: Prevention of retinal capillary basement membrane thickening in diabetic rats by aldose reductase inhibitors [abstr]. Invest Ophthalmol Vis Sci [Suppl] 25: 159, 1984.Google Scholar
  69. 69.
    Beyer-Mears A, Varagiannis E, Cruz E: Effect of sorbinil on reversal of proteinuria [abstr]. Diabetes [Suppl 1] 34: 101A, 1985.Google Scholar
  70. 70.
    Cunha-Vaz JG, Mota CC, Leite EC, Abreu JR, Ruas MA: Effect of sorbinil on blood-retinal barrier in early diabetic retinopathy. Diabetes 35: 574–578, 1986.PubMedCrossRefGoogle Scholar
  71. 71.
    Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A: Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science 232: 1629–1632, 1986.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1988

Authors and Affiliations

  • Robert G. Spiro

There are no affiliations available

Personalised recommendations