Ultrasonic Velocity Studies of Composite and Heterogeneous Materials

  • Subhendu K. Datta
  • Hassel M. Ledbetter
  • Arvind H. Shah


Ultrasonic measurements of wave-propagation characteristics in composite and heterogeneous materials provide an excellent means to study their mechanical properties. In recent years we have studied, both theoretically and experimentally, characteristics of elastic-wave propagation in particlereinforced composites and heterogeneous materials as well as in homogeneous and laminated fiber-reinforced composites. Comparison of theoretical predictions with obervations of wave velocities has shown good agreement and has provided a way to evaluate microstructural dependence of mechanical properties of these materials. Modeling predictions coupled with observations can also be used to obtain mechanical properties of the reinforcing phase, which are sometimes not easily obtained. In this paper we present results of some of these recent studies.

We also present results of our study of changes in phase velocities and attenuation caused by interface layers between the reinforcing phase and the matrix. We show that this third phase measurably modifies the dispersion behavior. This should lead to effective characterization of interface layer properties by ultrasonic methods.


Elastic Constant Phase Velocity Cast Iron Elastic Wave Interface Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. K. Bose and A. K. Mal, Elastic Waves in a Fiber-Reinforced Composite, J Mech and Phys of Solids 22:217 (1974).ADSMATHCrossRefGoogle Scholar
  2. 2.
    A. K. Mal and S. K. Bose, Dynamic Moduli of a Suspension of Imperfectly Bonded Spheres, Proc of the Cambridge Phil Soc 76:587 (1974).ADSMATHCrossRefGoogle Scholar
  3. 3.
    S. K. Datta, A Self-Consistent Approach to Multiple Scattering of Elastic Waves, J Appl Mech 44:657 (1977).CrossRefGoogle Scholar
  4. 4.
    A. J. Devaney, Multiple Scattering Theory for Discrete, Elastic, Random Media, J Math Phys 21:2603 (1980).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    J. G. Berryman, Long-Wavelength Propagation in Composite Elastic Media--I, Spherical Inclusions, JASA 68:1809 (1980).MATHCrossRefGoogle Scholar
  6. 6.
    J. G. Berryman, “Long-Wavelength Propagation in Composite Elastic Media--II. Ellipsoidal Inclusions, JASA 68:1820 (1980).MATHCrossRefGoogle Scholar
  7. 7.
    J. R. Willis, A Polarization Approach to the Scattering of Elastic Waves--II. Multiple Scattering from Inclusions, J Mech and Phys of Solids 28:307 (1980).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    V. K. Varadan, Y. Ma, and V. V. Varadan, A Multiple Scattering Theory for Elastic Wave Propagation in Discrete Random Media, JASA 77:375 (1985).MATHCrossRefGoogle Scholar
  9. 9.
    H. M. Ledbetter, and S. K. Datta, Effective Wave Speeds in an SiC-particle-reinforced AP Composite. JASA 79:239 (1986)CrossRefGoogle Scholar
  10. 10.
    D. T. Read and H. M. Ledbetter, Elastic Properties of a BoronAluminum Composite at Low Temperature, J of Appl Phys 48:2827 (1977).ADSCrossRefGoogle Scholar
  11. 11.
    V. K. Kinra, M. S. Petraitis, and S. K. Datta, Ultrasonic Wave Propagation in a Random Particulate Composite, Intl J of Solids and Struc 16:301 (1980).CrossRefGoogle Scholar
  12. 12.
    S. K. Datta and H. M. Ledbetter, Anisotropic Elastic Constants of a Fiber-reinforced Boron-Aluminum Composite, in: “Mechanics of Nondestructive Testing,” W. W. Stinchcomb, ed., Plenum, New York (1980).Google Scholar
  13. 13.
    H. M. Ledbetter, and S. K. Datta, Young’s Modulus and the Internal Friction of an SiC-Particle-Reinforced Aluminum Composite, Matls Sc and Engng 67:25 (1984).CrossRefGoogle Scholar
  14. 14.
    H. M. Ledbetter, Dynamic Elastic Modulus and Internal Friction in Fibrous Composites, in: “Nonmetallic Materials and Composites at Low Temperatures,” Plenum, New York (1979).Google Scholar
  15. 15.
    H. M. Ledbetter, N. V. Frederick, and M. W. Austin, Elastic-Constant Variability in Stainless Steel, J of Appl Phys 51:305 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    S. K. Datta, Diffraction of Plane Elastic Waves by Ellipsoidal Inclusions, JASA 61:1432.Google Scholar
  17. 17.
    J. A. Stratton, “Electromagnetic Theory,” McGraw-Hill, New York (1941).MATHGoogle Scholar
  18. 18.
    S. K. Datta and H. M. Ledbetter, Effect of Interface Properties on Wave Progagation in a Medium with Inclusions, in: “Mechanics of Material Interfaces,” A.P.S. Selvadurai and G.Z. Voyiadjis, eds., Elsevier, The Netherlands. (1986).Google Scholar
  19. 19.
    J. E. Gubernatis and E. Domany, Effects of Microstructure on the Speed and Attenuation of Elastic Waves in Porous Materials, Wave Motion 6:579 (1984).MATHCrossRefGoogle Scholar
  20. 20.
    S. K. Datta, H. M. Ledbetter, and R. D. Kriz, Calculated Elastic Constants of Composites containing Anisotropic Fibers, Intl J of Solids and Struc 20:429 (1984).MATHCrossRefGoogle Scholar
  21. 21.
    R. Hill Theory of Mechanical Properties of Fibre-Strengthened Materials: - I. Elastic Behavior, J of the Mech and Phys of Solids 12:199 (1964).ADSCrossRefGoogle Scholar
  22. 22.
    A. H. Shah and S. K. Datta, “Harmonic Waves in a Periodically Laminated Medium,” Intl J of Solids and Struc 18:397 (1982).MATHCrossRefGoogle Scholar
  23. 23.
    S. K. Datta, A. H. Shah, R. L. Bratton, and Y. N. Al-Nassar, Guided Wave Propagation in Laminated Composite Plates with Low-Velocity Interface Layers, to be published.Google Scholar
  24. 24.
    T. Okamoto, A. Kagawa, K. Kiyoshi, and H. Matsumoto, Effects of Graphite Shape on Thermal Conductivity, Electrical Resistivity, Damping Capacity and Young’s Modulus of Cast Iron below 500 degrees C” J of the Japan Foundrymen’s Soc 55:32 (1983).Google Scholar
  25. 25.
    D. Lohe, O. Vohringer, and E. Macherauch, Der Einfluss der Graphitform auf den Elastizitatsmodul von ferritischen GusseisenWerkstoffen, Zeitschrift fur Metallkunde 74:265 (1983).Google Scholar
  26. 26.
    G. R. Speich, A. J. Schwoeble, and B. M. Kapadia, Elastic Moduli of Gray and Nodular Cast Iron, J of Appl Mech 47:821 (1980).CrossRefGoogle Scholar
  27. 27.
    L. Anand, Elastic Moduli of Gray and Ductile Cast Irons, Scripta Met 16:173 (1982).CrossRefGoogle Scholar
  28. 28.
    E. Kroner, and H. Koch, Effective Properties of Disordered Materials, SM Archives 1:183 (1976).Google Scholar
  29. 29.
    H. Wawra, B. K. D. Gairola, and E. Kroner, Comparison between Experimental Values and Theoretical Bounds for the Elastic Constants E, G, K and µ of Aggregrates of Noncubic Crystallites, Zeitschrift fur Metallkunde 73:69 (1982).Google Scholar
  30. 30.
    H. M. Ledbetter and D. T. Read, Orthorhombic elastic constants of an NbTi%Cu Composite Superconductor, J of Appl Phys 48:1874 (1977).ADSCrossRefGoogle Scholar
  31. 31.
    R. D. Kriz and W. W. Stinchcomb, Elastic Moduli of Transversely Isotropic Graphite Fibers and their Composites, Exp Mech 19:41 (1979).CrossRefGoogle Scholar
  32. 32.
    R. E. Smith, Ultrasonic Elastic Constants of Carbon Fibers and Their Composites, J of Appl Phys 43:2555 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Subhendu K. Datta
    • 1
  • Hassel M. Ledbetter
    • 2
  • Arvind H. Shah
    • 3
  1. 1.Department of Mechanical Engineering and CIRESUniversity of ColoradoBoulderUSA
  2. 2.Fracture and Deformation Division, Institute for Materials Science and EngineeringNational Bureau of StandardsBoulderUSA
  3. 3.Department of Civil EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations