Skip to main content

Placental Distribution and the Effect of Antihypertensive Drugs on Monoamine Oxidase and Cathechol-o-Methyl Transferase Activity at Term

  • Chapter
Cellular Biology and Pharmacology of the Placenta

Part of the book series: Trophoblast Research ((TR))

  • 27 Accesses

Abstract

Pregnancy associated with hypertension frequently requires antihypertensive medications, which among other effects should improve the uteroplacental circulation. The mechanism and site of action of the commonly used antihypertensive drugs (AHD) used in pregnancy in the circulation has been previously investigated (Lunell et al., 1981; Johanson et al., 1980, Freed et al., 1978; Moskowitz and Cohn, 1980). Unfortunately, knowledge concerning mechanism of action of this group of AHD on the placenta and the uterus is limited. It has been suggested that their effect among others may be mediated via a direct action on the placental blood vessel wall. Moreover, beta adrenergic receptors were found in the brush border membrane of the placenta where some AHD could exert their action (Moore and Whitsett, 1981; Karlsson et al., 1984; Maigaard et al., 1984). Other effects might be exerted on metabolizing enzymes for placental catecholamine and serotonin, monoamine oxidase (MAO) and catechol-o-methyl transferase (COMT). The activities of these metabolizing enzymes have been shown previously to be lower in placentae of patients with hypertension (Barnea et al., 1983, 1986) where a high concentration of norepinephrine was found (DeMaria, 1966). In addition, alpha methyl DOPA and hydralazine can interact with COMT and MAO, respectively in other tissues (Gordonsmith et al., 1982; Lyles et al., 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnea, E.R., MacLusky, N.J., and Naftolin, F. (1983) Catecholamine metabolism in the human term placenta. Soc. Gyn. Invest. (Abstract), 283.

    Google Scholar 

  • Barnes, E.R., MacLusky, N.J., and Naftolin, F. (1986) Monoamine oxidase activity in the human placenta at term. Am. J. Perinat. 3, 219 - 224.

    Article  Google Scholar 

  • Bates, G.W., Edman, C.D., Porter, J.C., Johnston, J.M., and MacDonald, P.C. (1979) An assay for human erythrocyte catechol-o-methyl transferase activity using a catechol estrogen as the substrate. Clin. Chem. Acta 94, 63 - 69.

    Article  CAS  Google Scholar 

  • Casey, M.L. and MacDonald, P.C. (1983) Characterization of catechol-o-methyltransferase activity in human uterine decidua vera tissue. Am. J. Obstet. Gynecol. 145, 453 - 457.

    CAS  PubMed  Google Scholar 

  • DeMaria, F.J. and See, H.Y.C. (1966) Role of the placenta in pre-eclampsia. Am. J. Obstet. Gynecol. 77, 412 - 416.

    Google Scholar 

  • Freed, C.R., Murphy, R.C., and Quintero, E. (1978) Blood pressure reduction and hypothalamic a-methyl-DOPA metabolism after long term a-methyl-DOPA infusions. Clin. Res. 26, 100A.

    Google Scholar 

  • Gordonsmith, R.H., Raxworthy, M.J., and Gulliver, P.A. (1982) Substrate stereo-specificity and selectivity of catechol-o-methyl transferase for DOPA, DOPA derivatives, and a-substituted catecholamines. J. Pharmacol. 31, 433 - 439.

    CAS  Google Scholar 

  • Jeffery, D.R. and Roth, J.A. (1984) Characterization of membrane-bound and soluble catechol-o-methyl transferase from human frontal cortex. J. Neurochem. 42, 826 - 832.

    Article  CAS  PubMed  Google Scholar 

  • Jouppila, P., Kirkinen, P., Koivula, A., and Ylikorkala, O. (1985) Effects of dehydralazine infusion on the fetoplacental blood flow and maternal prostanoids. Obstet. Gynecol. 65, 115 - 118.

    CAS  PubMed  Google Scholar 

  • Karlsson, K., Lundren, Y., and Ljungblad, U. (1984) The acute effect of a non-selective ß-adrenergic blocking agent in hypertensive pregnant rats. Acta Obstet. Gynecol. Scand. (Suppl.) 118, 81 - 85.

    CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N., Farr, A.L., and Randall, R.J. (1951) Protein measurement with the pholin phenol reagent. Biol. Chem. 193, 265 - 269.

    CAS  Google Scholar 

  • Lueck, J. and Aladjem, S. (1982) Effect of therapeutic levels of magnesium sulphate, methyl dopa, hydralazine and phenobarbitone on normal human trophoblast in vitro. Placenta 3, 39 - 44.

    Article  CAS  PubMed  Google Scholar 

  • Lunell, N.O., Hjendahl, P., and Fredholm, B.B. (1981) Circulatory and metabolic effects of a combined and -ß-adrenoreceptor blocker (labetalol) in hypertension of pregnancy. Br. J. Pharmacol. 15, 345 - 349.

    Article  Google Scholar 

  • Lyles, A.G., Garcia-Rodriguez, J., and Callingham, B.A. (1983) Inhibitory actions of hydralazine upon monoamine oxidizing enzymes in the rat. Biochem. 32, 25152520.

    Google Scholar 

  • Maigaard, S., Forman, A., and Andersson, K.E. (1984) Effects of nifedipine on human placental arteries. Gynecol. Obstet. Invest. 18, 217 - 221.

    Article  CAS  PubMed  Google Scholar 

  • Moore, J. and Whitsett, J. (1981) The beta-adrenergic receptor in human placenta: Receptor subtype analysis and partial characterization of the solubilized receptor. Placenta Suppl. 3, 103 - 114

    CAS  PubMed  Google Scholar 

  • Moskowitz, R. and Cohn, T. (1980) Hemodynamic effects of oxdralazine and hydralazine in hypertension. Clin. Pharmacol. Ther. 27, 773 - 777.

    Article  CAS  PubMed  Google Scholar 

  • Nandakumaran, M., Gardey, C., Challier, J.C., and Oliver, G. (1983) Placental monoamine oxidase content and inhibition: effect of enzyme inhibition on maternofetal transfer of noradrenaline in the human placenta in vitro. Placenta 4, 57 - 62.

    Article  CAS  PubMed  Google Scholar 

  • Parvez, H. and Parvez, S. (1973) Micro radioisotopic determination of enzymes catechol-o-methyltransferase, phenyletyhanolamine-n-methyl-transferase and monoamine oxidase in a single concentration of tissue homogenate. Clin. Chem. Acta 40, 85 - 92.

    Article  Google Scholar 

  • O’Shaugnessy, R.W. and Zuspan, F.P. (1982) Uterine catecholamines in normal and hypertensive human pregnancy. Clin. Exp. Hypertens. 2 (Abstract), 183.

    Google Scholar 

  • Sibai, B.M., Graham, J.M. and McCubbin, J.H. (1984) A comparison of intravenous and intramuscular magnesium sulphate regimens in preeclampsia. Am. J. Obstet. Gynecol. 149, 128 - 150.

    Google Scholar 

  • Weinshilbum, R.M. and Raymond, F.A. (1976) Calcium inhibition of rat catechol-omethyl transferase. Biochem. Pharmacol. 25, 573 - 577.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barnea, E.R., De Cherney, A.H., Naftolin, F. (1987). Placental Distribution and the Effect of Antihypertensive Drugs on Monoamine Oxidase and Cathechol-o-Methyl Transferase Activity at Term. In: Miller, R.K., Thiede, H.A. (eds) Cellular Biology and Pharmacology of the Placenta. Trophoblast Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1936-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1936-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1938-3

  • Online ISBN: 978-1-4757-1936-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics