Advertisement

Lecithin pp 47-59 | Cite as

Drug Entrapment by Phospholipids

  • Rolf E. Schubert
  • Karl-Heinz Schmidt
Part of the Advances in Behavioral Biology book series (ABBI, volume 33)

Summary

In living organisms, metabolically active compounds are frequently associated with aggregated phospholipid structures. For example, hydrophilic molecules (e.g., enzymes, hormones, neurotransmitters) can be found inside the cell as the content of phospholipid vesicles. In addition, hydrophobic biomolecules like triglycerides or cholesterol are transported in the form of aggregates such as mixed micelles or lipoproteins. This entrapment of hydrophilic and hydrophobic biomolecules is possible due to monolayer formation on hydrophobic surfaces and bilayer formation on hydrophilic surfaces.

As a consequence of the evolution of various phospholipid species, different parameters of the lipid interface (e.g., surface charge and hydration, internal order, viscosity, conformation) can be modified. The interfacial properties of the phospholipid aggregates determine their fate and consequently the distribution pattern of the entrapped molecules.

The technology of drug entrapment by phospholipids, therefore, follows well established biological models and, in essence, yields predictable results on stability and release properties, adhesion, transport, endocytosis, and fusion.

Keywords

Bile Salt High Density Lipoprotein Hydrophobic Drug Phospholipid Vesicle Liposomal Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alving, C. R., and Richards, R. L., 1983, Immunologic aspects of liposomes, in: “Liposomes”, M. J. Ostro, ed., Marcel Decker, New York — Basel.Google Scholar
  2. Angelova, M. I., and Dimitrov, D. S., 1986, Liposome electroformation, Faraday Discuss. Chem. Soc, 81.Google Scholar
  3. Arrowsmith, M., Hadgraft, J., and Kellaway, I. W., 1984, The in vivo release of cortisone esters from liposomes and the intramuscular clearance of liposomes, Int. J. Pharm., 20:347.CrossRefGoogle Scholar
  4. Bader, H., and Ringsdorf, H., Membrane-spanning symmetric and asymmetric diyne amphiphiles, 1986, Faraday Discuss. Chem. Soc., 81.Google Scholar
  5. Bangham, A. D., Standish, M. M., Watkins, J. C., 1965, Diffusion of univalent ions across the lamellae of swollen lipids, J. Mol. Biol., 13:238.PubMedCrossRefGoogle Scholar
  6. Barenholz, Y., Amselem, S., and Lichtenberg, D., 1979, A new method for preparation of phospholipid vesicles (liposomes) — french press, FEBS Lett., 99:210.CrossRefGoogle Scholar
  7. Batzri, S., and Korn, E. D., 1973, Single bilayer liposomes prepared without sonication, Biochim. Biophys. Acta, 298:1015.PubMedCrossRefGoogle Scholar
  8. Brunner, J., Skrabal, P., and Hauser H., 1976, Single bilayer vesicles prepared without sonication physico-chemical properties, Biochim. Biophys. Acta, 455:322.PubMedCrossRefGoogle Scholar
  9. Campbell, Ph. J., 1983, Toxicity of some charged lipids used in liposome preparation, Cytobiol., 37:21.Google Scholar
  10. Cevc, G., Seddon, J. M., and Hartung, R., 1986, Fusogenic liposomes, in: “Liposomes as Drug Carriers”, K.-H. Schmidt, ed., Georg Thieme Verlag, Stuttgart — New York.Google Scholar
  11. Chapman, D., Lee, D. C., and Hayward, J. A., 1986, Physicochemical studies of vesicles and biomembranes, Faraday Discuss. Chem. Soc., 81.Google Scholar
  12. Coune, A., Scullier, J. P., Fruhling, J, et al., 1983, Iv administration of a water-insoluble antimitotic compound entrapped in liposomes. Preliminary report on infusion of large volumes of liposomes to man, Cancer Treat. Rep., 67:1031.PubMedGoogle Scholar
  13. Coune, A., 1984, Lipids and liposomes for improving efficacy of cancer chemotherapy, Eur. J. Cancer, 20:443.CrossRefGoogle Scholar
  14. Crommelin, D. J. A., and Van Bommel E. M. G., 1984, Stability of liposomes on storage, Pharm. Res., 4:159.CrossRefGoogle Scholar
  15. Cullis, P. R., Hope, M. J., de Kruijff, B., Verkleij, A. J., and Tilcock, C. P. S., 1985, Stuctural properties and functional roles of phospholipids in biological membranes, in: “Phospholipids and Cellular Regulation”, Vol. 1, J. F. Kuo, ed., CRC Press, Boca Raton, Florida.Google Scholar
  16. Deamer, D., and Bangham, A.D., 1976, Large volume liposomes by an ether vaporization method, Biochim. Biophys. Acta, 443:629.PubMedCrossRefGoogle Scholar
  17. Eibl, H., 1981, Phospholipid synthesis, in: “Liposomes: From Physical Structure to Therapeutic Applications”, C. G. Knight ed., Elsevier / North-Holland Biomedical Press, Amsterdam — New York — Oxford.Google Scholar
  18. Fidler I. J., and Poste, G., 1982, Macrophage-mediated destruction of malignant tumor cells and new strategies for the therapy of metastatic disease, Springer Semin. Immunpathol., 5:161.Google Scholar
  19. Fromherz, P., Röcker, C., and Rüppel D., 1986, From discoid micelles to spherical vesicles, the concept of edge-activity, Faraday Discuss. Chem. Soc, 81.Google Scholar
  20. Gabev, E. E., Svilenov, D. K., Poljakova-Krusteva, O. T., and Vassilev, J., 1985, Brain, liver and spleen detection of liposomes after rectal administration, J. Microencapsulation, 2:85.PubMedCrossRefGoogle Scholar
  21. Gerritsen, W. J., Verkley, A. J., Zwaal, R. F. A., and Van Deenen, L. L. M., 1978, Freeze-fracture appearance and disposition of band 3 protein from the human erythrocyte membrane in lipid vesicles, Eur. J. Biochem., 85:255.PubMedCrossRefGoogle Scholar
  22. Gregoriadis, G. ed., 1984, “Liposome Technology”, Vol. III, chapters 2-9, CRC Press, Bota Raton, Florida.Google Scholar
  23. Hayward, J. A., Levine, D. M., Neufeld, L., Simon, S. R., Johnston, D. S., and Chapman, D., 1985, Polymerized liposomes as stable oxygen-carriers, FEBS Lett., 187:261.PubMedCrossRefGoogle Scholar
  24. Hirnle, P., Jaroni, H., Schubert, R., and Schmidt, K.-H., 1986, Endolymphatic application of liposomal cytostatics for treatment of lymph node metastases: First animal experiments, in: “Liposomes as Drug Carriers”, K.-H. Schmidt, ed., Georg Thieme Verlag, Stuttgart — New York.Google Scholar
  25. Hope, M. J., Bally, M. B., Webb, G., and Cullis, P. R., 1985, Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential, Biochim. Biophys. Acta, 812:55.PubMedCrossRefGoogle Scholar
  26. Huang, C., 1969, Studies on phosphatidylcholine vesicles. Formation and physical characteristics, Biochemistry, 8:344.PubMedCrossRefGoogle Scholar
  27. Huang, C., and Mason J. T., 1978, Geometric packing constraints in egg phosphatidylcholine vesicles, Proc. Natl. Acad. Sci. USA, 75:308.PubMedCrossRefGoogle Scholar
  28. Huang, L., 1983, Liposome-cell interactions in vitro, in: “Liposomes”, M. J. Ostro, ed., Marcel Deccer, New York — Basel.Google Scholar
  29. Hunt, C. A., and Burnette, R. B., 1984, Lipid microencapsulation of hemoglobin, Appl. Biochem. Biotechnol., 10:147.PubMedCrossRefGoogle Scholar
  30. Israelachvili, J. N., Marcelja, S., and Horn, R. G., 1980, Physical principles of membrane organization, Q. Rev. Biophys., 13:121.PubMedCrossRefGoogle Scholar
  31. Killian, J. A., de Kruijff, B., van Echteld, C. J. A., Verkleij, A. J., Leunissen-Bijfelt, J., de Gier, J., 1983, Mixtures of gramicidin and lysophosphatidylcholine form lamellar structures, Biochim. Biophys. Acta, 728:141.PubMedCrossRefGoogle Scholar
  32. Knight, C.G., Bard, D.R., and Thomas, D. P. P., 1985, Liposomes as carrier of antiarthritic agents, Ann. N. Y. Acad. Sci., 446:415.PubMedCrossRefGoogle Scholar
  33. Lee, V. H. L., Urrea, P.T., Smith, R. E. and Schanzlin, D. J., 1983, Ocular drug bioavailability from topically applied liposomes, Surv. Ophthalmol., 29:335.CrossRefGoogle Scholar
  34. Lelkes, P. I., 1984, Methodological aspects dealing with stability measurements of liposomes in vitro using the carboxyfluorescein-assay, in: “Liposome Technology”, Vol. III, G. Gregoriadis, ed., CRC Press, Boca Rato, Florida.Google Scholar
  35. Madden, T. D., and Cullis P. R., 1982, Stabilization of bilayer structure for unsaturated phosphatidylethanolamines by detergents, Biochim. Biophys. Acta, 684:149.PubMedCrossRefGoogle Scholar
  36. Mayhew, E., and Papahadjopoulos, D., 1983, Therapeutic applications of liposomes, in: “Liposomes”, M. J. Ostro, ed., Marcel Deccer, New York — Basel.Google Scholar
  37. Mayhew, E., Lazo, R., Vail, W. J., King, J., and Green A. M., 1984, Characterization of liposomes prepared using a microemulsifier, Biochim. Biophys. Acta, 775:169.PubMedCrossRefGoogle Scholar
  38. Mazer, N. A., Kwasnick, R. F., Carey, M. C., Benedek, G. B., 1976, Quasielastic light scattering spectroscopic studies of aqueous bile salt, bile salt-lecithin and bile salt-lecithin-cholesterol solutions, Mizellization, Solubilization, Microemulsions, 1:383.Google Scholar
  39. McEvoy, L., Williamson, P., and Schlegel, R. A., 1986, Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages, Proc. Natl. Acad. Sci. USA, 83:3311.PubMedCrossRefGoogle Scholar
  40. Milsmann, M. H. W., Schwendener, R. A., and Weder, H.-G., 1978, The preparation of large single bilayer liposomes by a fast and controlled dialysis, Biochim. Biophys. Acta, 512:147.PubMedCrossRefGoogle Scholar
  41. Müller K., 1981, Structural dimorphism of bile salt/lecithin mixed micelles, Biochemistry, 20:404.PubMedCrossRefGoogle Scholar
  42. New York Acad. Sci., 1977, “The use of liposomes in biology and medicine”, Conf. Proc..Google Scholar
  43. Olson, F., Hunt, C. A., Szoka, F. C., Vail, W.J., and Papahadjopoulos, D., 1979, Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes, Biochim. Biophys. Acta, 557:9.PubMedCrossRefGoogle Scholar
  44. Ostro, M. J., and Giacomoni, D., 1983, Liposomes as a tool in molecular biology: a comparison to other methodologies, in: “Liposomes”, M. J. Ostro, ed., Marcel Deccer, New York — Basel.Google Scholar
  45. Pagano, R. E., Schroit A. J., and Struck, D. K., 1981, Interaction of phospholipid vesicles with mamalian cells in vitro: Studies of mechanisms, in: “Liposomes: From Physical Structure to Therapeutic Applications”, C. G. Knight, ed., Elsevier / North-Holland Biomedical Press, Amsterdam — New York — Oxford.Google Scholar
  46. Papahadjopoulos, D., Vail, W. J., Jacobson, K., and Poste, G., 1975, Cochleate lipid cylinders: Formation by fusion of unilamellar lipid vesicles, Biochim. Biophys. Acta, 394:483.PubMedCrossRefGoogle Scholar
  47. Patel, H. M., and Ryman, B. E., 1981, Systemic and oral administration of liposomes, in: “Liposomes: From Physical Structure to Therapeutic Applications”, C. G. Knight, ed., Elsevier / North-Holland Biomedical Press, Amsterdam — New York — Oxford.Google Scholar
  48. Pirkl, V., Jaroni, HW., Schubert, R., and Schmidt, K.-H., 1986, Liposome — encapsulated hemoglobin as oxygen carrying blood substitute, J. Eur. Soc. Artif. Org., 4, Suppl. 2:408.Google Scholar
  49. Regen, S. L., 1985, Polymerized phosphatidylcholine vesicles as drug carriers, Ann. N. Y. Acad. Sci., 446:296.PubMedCrossRefGoogle Scholar
  50. Rhoden, V., and Goldin, S. M., 1979, Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis, Biochemistry, 18:4173.PubMedCrossRefGoogle Scholar
  51. Ring, K., Henkel, B., Valenteijn, A., and Gutermann R., 1986, Studies on the permeability and stability of liposomes derived from a membrane-spanning bipolar archeabacterial tetraetherlipid, in: “Liposomes as Drug Carriers”, K.-H. Schmidt, ed., Georg Thieme Verlag, Stuttgart — New York.Google Scholar
  52. Roth, H. J., 1986, Chirale elements of liposomes, in: “Liposomes as Drug Carriers”, K.-H. Schmidt, ed., Georg Thieme Verlag, Stuttgart — New York.Google Scholar
  53. Sackmann, E., Duwe, H.-P., and Engelhardt, H., 1986, Membrane bending elasticity and its role for shape fluctuations and shape transformations of cells and vesicles, Faraday Discuss. Chem. Soc, 81.Google Scholar
  54. Scherphof, G., Damen, J., and Hoekstra, D., 1981, Interactions of liposomes with plasma proteins and components of the immune system, in: “Liposomes: From Physical Structure to Therapeutic Applications”, C. G. Knight, ed., Elsevier / North-Holland Biomedical Press, Amsterdam — New York — Oxford.Google Scholar
  55. Scherphof, G., van Leeuwen, B., Wilschut, J., and Damen, J., 1983, Exchange of phosphatidylcholine between small unilamellar liposomes and human plasma high-density lipoprotein involves exclusively the phospholipid in the outer monolayer of the liposomal membrane, Biochim. Biophys. Acta, 732:595.PubMedCrossRefGoogle Scholar
  56. Scherphof, G. L., Damen, J., and Wilschut, J., 1984, Interactions of liposomes with plasma proteins, in: “Liposome Technology”, Vol. III, G. Gregoriadis, ed., CRC Press, Boca Raton, Florida.Google Scholar
  57. Schubert, R., Beyer, K., Wolburg, H., and Schmidt, K.-H., 1986a, Structural changes in merhbranes of large unilamellar vesicles after binding of sodium cholate, Biochemistry, 25:5263.PubMedCrossRefGoogle Scholar
  58. Schubert, R., Beyer, K., Wolburg, H., Jaroni, H., and Schmidt K.-H., 1986b, Membrane alteration induced by bile salts. Transient membrane holes as one possible mechanism of drug release from liposomes, in: “Liposomes as Drug Carriers”, K.-H. Schmidt, ed., Georg Thieme Verlag, Stuttgart — New York.Google Scholar
  59. Schurtenberger, P., Mazer, N., Waldvogel S., and Känzig, W., 1984, Preparation of monodisperse vesicles with variable size by. dilution of mixed micellar solutions of bile salt and phosphatidylcholine, Biochim. Biophys. Acta, 775:111.PubMedCrossRefGoogle Scholar
  60. Schwendener, R. A., Supersaxo, A., Rubas, W., and Weder, H. G., 1986, Liposomes as carriers for lipophilic antitumor prodrugs, in: “Liposomes as Drug Carriers”, K.-H. Schmidt, ed., Georg Thieme Verlag, Stuttgart — New York.Google Scholar
  61. Small, D. M., 1971, The physical chemistry of cholanic acids, in “The Bile Acids,” Vol. 1, P. P., Nair, and D. Kritchevsky, eds., Plenum Press, New York — London.Google Scholar
  62. Sömjen, G. J., and Gilat, T., 1985, Contribution of vesicular and micellar carriers to cholesterol transport in human bile, J. Lipid Res., 26:699.PubMedGoogle Scholar
  63. Strauss, G., 1984, Freezing and thawing of liposome suspensions, in: “Liposome Technology”, Vol. 1, G. Gregoriadis, ed., CRC Press, Boca Raton, Florida.Google Scholar
  64. Stricker, H., and Kibat, P. G., 1986, Storage stability of aqueous liposome dispersions, in: “Liposomes as Drug Carriers”, K.-H. Schmidt, ed., Georg Thieme Verlag, Stuttgart — New York.Google Scholar
  65. Sullivan, S. M., Connor, J.,: and Huang, L., 1986, Immunoliposomes: preparation, properties., and applications, Med. Res. Rev., 6:171.PubMedCrossRefGoogle Scholar
  66. Szoka, F., and Papahadjopoulos, D., 1978, Procedure for preparation of liposomes with largelinternal aqueous space and high capture by reverse-phase evaporation, Proc. Natl. Acad. Sci. USA, 75:419.CrossRefGoogle Scholar
  67. Träuble, H., and Grell, E., 1971, The formation of asymmetrical spherical lecithin vesicles, Neurosci. Res. Prog. Bull., 9:373.Google Scholar
  68. Weinstein, J. N., and Lesermann, L. D., 1984, Liposomes as drug carriers in cancer chemotherapy, Pharmacol. Ther., 24:207.PubMedCrossRefGoogle Scholar
  69. Wendel, A., Jeschke, H., and Gloger, M., 1982, Drug-induced lipid peroxidation in mice. II. Protection against paracetamol-induced liver necrosis by intravenously entrapped glutathione, Biochem.Pharmacol., 31:3601.PubMedCrossRefGoogle Scholar
  70. Westerhof, W., 1985, Possibilities of liposomes as dynamic dosage forms in dermatology, Med. Hypotheses, 16:283.PubMedCrossRefGoogle Scholar
  71. Wirtz, K. W. A., 1974, Transfer of phospholipids between membranes, Biochim.Biophys. Acta, 344:95.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Rolf E. Schubert
    • 1
  • Karl-Heinz Schmidt
    • 1
  1. 1.Department of SurgeryUniversity of TuebingenWest Germany

Personalised recommendations