Lecithin pp 107-120 | Cite as

Phosphatidylcholine: Endogenous Precursor of Choline

  • Steven H. Zeisel
Part of the Advances in Behavioral Biology book series (ABBI, volume 33)


The choline which eventually reaches brain comes from one of two sources, the diet and pools of choline which have been synthesized de novo. As dietary intake can vary, choline must be stored in free and esterified form so as to ensure the maintenance of uninterrupted supplies of choline to tissues. These storage forms of choline, and the choline formed de novo are the endogenous sources of choline from which brain derives its supplies of this important amine. Of all the choline esters, phosphatidylcholine (PtdCho) is undoubtedly the largest and most important endogenous storage form of choline (Table 1). In this chapter, I will concentrate on the mechanisms whereby such endogenous pools of phosphatidylcholine serve as precursors of brain choline.


Brain Homogenate Choline Deficiency Choline Concentration Free Choline Acetylcholine Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zeisel, S.H. (1981) Dietary Choline: Biochemistry, physiology, and pharmacology. Ann. Rev. Nutr. 1:95–121.CrossRefGoogle Scholar
  2. 2.
    Kennedy, E.P. & Weiss, S.B. (1956) The function of cytidine coenzymes in the biosynthesis of phospholipids. J. Biol. Chem. 222:193–214.PubMedGoogle Scholar
  3. 3.
    Cohen, E.L. & Wurtman, R.J. (1976) Brain Acetylcholine: Control by dietary choline. Science 19:561–562.CrossRefGoogle Scholar
  4. 4.
    Ansell, G.B. and Spanner, S. Choline transport and metabolism in brain, in Phospholipids in the Nervous System (Horrocks, L.A., Ansell, G.B., and Porcellati, G., eds.), Vol.1, pp. 137-144, Raven, N.Y. (1982).Google Scholar
  5. 5.
    Dross, K., Kewitz, H.(1972) Concentration and origin of choline in rat brain. N.S. Arch. Pharmacol. 274, 91–106.CrossRefGoogle Scholar
  6. 6.
    Choi, R.L., Freeman, J.J. and Jenden, DJ. (1975) Kinetics of plasma choline in relation to turnover of brain choline and formation of acetylcholine. J. Neurochem. 24, 735–741.PubMedGoogle Scholar
  7. 7.
    Aquilonius, S.M., Ceder, G., Lying-Tunnell, U., Malmud, H.O., Shubert, J. (1975) The arteriovenous difference of choline across the brain of man. Brain Res. 99, 430–433.PubMedCrossRefGoogle Scholar
  8. 8.
    Spanner, S., Hall, R., Ansell, G.B. (1976) Arterio-venous differences of choline and choline lipids across the brain of rat and rabbit. Biochem. J. 154:133–140.PubMedGoogle Scholar
  9. 9.
    Atsushi, I., Hellerstein, E.E., Hegsted, D.M. (1963) Composition of dietary fat and the accumulation of liver lipid in the choline-deficient rat. J. Nutr. 79:488–492.Google Scholar
  10. 10.
    Best, C.H. & Huntsman, M.E. (1932) The effects of the components of lecithin upon the deposition of fat in the liver. J. Physiol. 75:405–412.PubMedGoogle Scholar
  11. 11.
    Lombardi, B. (1971) Effects of choline deficiency on rat hepatocytes. Fed. Proc. 30:139–142.PubMedGoogle Scholar
  12. 12.
    Haines, M. (1966) The effects of choline deficiency and choline re-feeding upon the metabolism of plasma and liver lipids. Can. J. Biochem. 44:45–57.PubMedCrossRefGoogle Scholar
  13. 13.
    Michael, U.F., Cookson, S.L., Chavez, R., Pardo, V. (1975) Renal function in the choline deficient rat. Proc. Soc. Exp. Biol. Med. 150:672–676.PubMedCrossRefGoogle Scholar
  14. 14.
    Baxter, J.H. (1947) A study of hemorrhagic-kidney syndrome of choline deficiency. J. Nutr. 34:333.PubMedGoogle Scholar
  15. 15.
    Best, C.H., Hartroft, W.S. (1949). Symposium on nutrition in preventative medicine: Nutrition, renal lesions and hypertension. Fed. Proc. 8:610.PubMedGoogle Scholar
  16. 16.
    Bremer, J., Greenberg, D. (1961) Methyltransferring enzyme system of microsomes in the biosynthesis of lecithin. Biochim. Biophys. Acta 46:205–216.CrossRefGoogle Scholar
  17. 17.
    Blusztajn, J.K., Zeisel, S.H., Wurtman, R.J. (1979) Synthesis of lecithin (phosphatidylcholine) from phosphatidylethanolamine in bovine brain. Brain Res. 179:319–327.PubMedCrossRefGoogle Scholar
  18. 18.
    Eagle, H. (1955) The minimum vitamin requirements of the L and Hela cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J. Exp. Med. 102:595–600.PubMedCrossRefGoogle Scholar
  19. 19.
    Sheard, N.F., Tayek, J.A., Bistrian, B.R., Blackburn, G.L., Zeisel, S.H. (1985) Plasma choline concentrations in humans fed parenterally. Am. J. Clin. Nutr. 42:352–60.Google Scholar
  20. 19a.
    Burt, M.E., Hanin, I., Brennan, M.F. (1980) Choline deficiency associated with total parenteral nutrition. Lancet ii:638–639.CrossRefGoogle Scholar
  21. 20.
    Haubrich, D.R., Wang, P.F., Clody, D.E. (1975) Increase in rat brain acetylcholine induced by choline or deanol. Life Sci. 17:975–980.PubMedCrossRefGoogle Scholar
  22. 21.
    White DA. (1973) The phospholipid content of mammalian tissues, in Form and Function of Phospholipids (Ansell, G.B., Hawthorne, J.N., and Dawson, R.M.C., eds.), pp. 441–482, Elsevier, Amsterdam.Google Scholar
  23. 22.
    Haubrich, D.R., Wang, P.F.L., Wedeking, P.W. (1975) Distribution and metabolism of intravenously administered choline-[methyl-3H] and synthesis of acetylcholine in various tissues of guinea pigs. J. Pharm. Exp. Ther. 193:246–255.Google Scholar
  24. 23.
    Report on Task Force on Reference Man (Snyder, et al. eds.) Pergamon, Oxford, (1975).Google Scholar
  25. 24.
    Haubrich, DR, Wang, PF, Chippendale, T., Procter, E. (1976) Choline and acetylcholine in rats: Effect of dietary choline. J. Neurochem. 27:1305–1313.PubMedCrossRefGoogle Scholar
  26. 25.
    Wurtman, JJ. (1979) Sources of choline and lecithin in the diet, in Nutrition and the Brain. Vol. 5 (Wurtman & Wurtman, eds.), Raven, N.Y. pps. 73-81.Google Scholar
  27. 26.
    Zeisel, S.H., Growdon, J.H., Wurtman, R.J., Magil, S.G., Logue, M. (1980) Normal plasma choline responses to ingested lecithin. Neurology 30:1226–1229.PubMedCrossRefGoogle Scholar
  28. 27.
    Zeisel, S.H., Wurtman, R.J. (1981) Developmental changes in rat blood choline concentration. Biochem. J. 198:565–570.PubMedGoogle Scholar
  29. 27a.
    Mallinger, A.G., Hanin, I., Stumf, R.L., Mallinger, J., Kopp, U., Erstling, O. (1983) Lithium treatment during pregnancy: a case study of erythrocyte choline content and lithium transport. J. Clin. Psychiatry 44:381–384.PubMedGoogle Scholar
  30. 28.
    Zeisel, S.H., Char, D., Sheard, N.F. (1986) Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. J. Nutr. 116:50–58.PubMedGoogle Scholar
  31. 29.
    Sheard, N.F., Zeisel, S.H. (1986) An in vitro study of choline uptake by intestine from neonatal and adult rats. Ped. Res. 20:768–772.CrossRefGoogle Scholar
  32. 30.
    Cornford, E.M., Braun, L.D., Oldendorf, W.H. (1978) Carrier mediated transport of choline and certain choline analogs. J. Neurochem. 30:299–308.PubMedCrossRefGoogle Scholar
  33. 31.
    Haubrich, DR, Wang, PF, Chippendale, T., Procter, E. (1976) Choline and acetylcholine in rats: Effect of dietary choline. J. Neurochem. 27:1305–1313.PubMedCrossRefGoogle Scholar
  34. 32.
    Haubrich, D.R., Gerber, N., Pflueger, A.B., Zweig, M. (1981) Tissue choline studied using a simple chemical assay. J. Neurochem. 36:1409–1417.PubMedCrossRefGoogle Scholar
  35. 33.
    Illingworth, D.R., Portman, O.W. (1973) Formation of choline from phospholipid precursors: A comparison of the enzymes involved in phospholipid catabolism in the brain of the rhesus monkey. Physiol. Chem. Physics 5:365–373.Google Scholar
  36. 34.
    Jope, R.S., Jenden, DJ. (1979) Choline and phospholipid metabolism and the synthesis of acetylcholine in rat brain. J. Neurosci. Res. 4, 69–82.PubMedCrossRefGoogle Scholar
  37. 35.
    Pardridge, W.M., Cornford, E.M., Braun, L.D., Oldendorf, W. (1979) Transport of choline and choline analogues through the blood-brain barrier, in Nutrition and the Brain, vol 5. (A. Barbeau, J. Growdon, R. Wurtman, eds.), Raven Press p.25-34.Google Scholar
  38. 36.
    Orlando P., Arienti G., Cerrito, F., Massari P., Porcellati G. (1977) Quantitative evaluation of two pathways for phosphatidylcholine biosynthesis in rat brain in vivo. Neurochem. Res. 2:191–201.CrossRefGoogle Scholar
  39. 37.
    Salerno D.M., Beeler D.A. (1973) The biosynthesis of phospholipids and their precursors in rat liver involving de novo methylation and base exchange pathways in vivo. Biochim. Biophys. Acta 326:325–338.PubMedCrossRefGoogle Scholar
  40. 38.
    Bjornstad P., Bremer J. (1966) In vivo studies on pathways for the biosynthesis of lecithin in the rat. J. Lipid Res. 7:38–45.PubMedGoogle Scholar
  41. 39.
    Hirata F., Axelrod, J. (1980) Phospholipid methylation and biological signal transmission. Science 209:1082–1090.PubMedCrossRefGoogle Scholar
  42. 40.
    Linblad L, Schersten T. (1976) Incorporation rate in vitro of choline and methylmethionine into human hepatic lecithin. Scand. J. Gastroenterol. 11:587–591.Google Scholar
  43. 41.
    Sundler R, Akesson B. (1975) Regulation of phospholipid synthesis in isolates of rat hepatocytes. J. Biol. Chem. 250:3359–3367.PubMedGoogle Scholar
  44. 42.
    Hirata F., Axelrod, J. (1978) Enzymatic synthesis and rapid translocation of phosphatidylcholine by two methyltransferases in erythrocyte membranes. Proc. Natl. Acad. Sci. USA 75:2348–2352.PubMedCrossRefGoogle Scholar
  45. 43.
    Higgins, J.A. (1981) Biogenesis of endoplasmic reticulum phosphatidylcholine. Translocation of intermediates across the membrane bilayer during methylation of phosphatidylethanolamine. Biochim. Biophys. Acta 640:1–15.PubMedCrossRefGoogle Scholar
  46. 44.
    Schneider, WJ, Vance, DE. (1978) Effect of choline deficiency on the enzymes that synthesize phosphatidylcholine and phosphatidylethanolamine in rat liver. Europ. J. Biochem. 85:181–187.PubMedCrossRefGoogle Scholar
  47. 45.
    Pascale, R., Pirisi, L., Daino, L., Zanetti, S., Satta, A., Bartoli, E., Feo, F. (1982) Role of phosphatidylethanolamine methylation in the synthesis of phosphatidylcholine by hepatocytes isolated from choline-deficient rats. FEBS Letters 145:293–297.PubMedCrossRefGoogle Scholar
  48. 46.
    Lyman, R.L., Sheenan, G., Tinoco, J. (1973) Phosphatidylethanolamine metabolism in rats fed a low methionine, choline-deficient diet. Lipids 8:71–79.PubMedCrossRefGoogle Scholar
  49. 47.
    Cornatzer, W.E., Hoffman, D.R., Haning, J.A. (1984) The effect of hyper and hypothyroidism, hypophysectomy and adrenalectomy on phosphatidylethanolamine methyltransferase, phosphatidylmethyl-ethanolamine methyltransferase and choline Lipids 19:1–4.Google Scholar
  50. 48.
    Griffith, W.H., Dyer, H.M. (1968) Present knowledge of methyl groups in nutrition. Nutr. Rev. 26:1–8.CrossRefGoogle Scholar
  51. 49.
    Dawson, R.M.C. (1955) Role of glycerolphosphorylcholine and glyceryl-phosphorylethanolamine in liver phospholipid metabolism. Biochem J. 59:5–8.PubMedGoogle Scholar
  52. 50.
    Coleman, R. (1973) Phospholipids and the hepato-portal system, in Form and Function of Phospholipids (Ansell, G.B., Hawthorne, J.N., and Dawson, R.M.C., eds.), pp. 345–376, Elsevier, Amsterdam.Google Scholar
  53. 51.
    Stein, Y., Stein, O. (1966) Metabolism of labeled lysolecithin, lysophosphatidyl ethanolamine and lecithin in the rat. Biochim. Biophys. Acta 116:95–107.PubMedCrossRefGoogle Scholar
  54. 52.
    Zeisel, S.H. (1985) Formation of unesterified choline by rat brain. Biochim. Biophvs. Acta 835:331–343.CrossRefGoogle Scholar
  55. 53.
    Ansell, G.B. (1973) Phospholipids and the nervous system, in Form and Function of Phospholipids (Ansell, G.B., Hawthorne, J.N., and Dawson, R.M.C, eds.), pp. 377–422, Elsevier, Amsterdam.Google Scholar
  56. 54.
    Blusztajn, J.K., Wurtman, R.J. (1983) Choline and cholinergic neurons. Science 221:614–620.PubMedCrossRefGoogle Scholar
  57. 55.
    Blusztajn J.K., Zeisel S.H., Wurtman, RJ. (1985) Developmental changes in the activity of phosphatidylethanolamine N-methyltransferases in rat brain. Biochem. J. 232:505–511.PubMedGoogle Scholar
  58. 56.
    Guyenet, P., Lefresne, P., Rossier, J., Beaujouan, J.C., Glowinski, J. (1973) Effect of sodium, hemicholinium-3 and antiparkinson drug’s on [14C]-acetylcholine synthesis and [3H]-choline uptake in rat striatal synaptosomes. Brain Res 62:523–529.PubMedCrossRefGoogle Scholar
  59. 57.
    Leprohan, C.E., Blusztajn, J.K., Wurtman, RJ. (1983) Dopamine stimulation of phosphatidylcholine (lecithin) biosynthesis in rat brain neurons. Proc. Natl. Acad. Sci. USA 80:2063–2065.CrossRefGoogle Scholar
  60. 58.
    Blusztajn, J.K., Wurtman, R.J. (1981) Choline biosynthesis by a preparation enriched in synaptosomes from rat brain. Nature 290, 417–418.PubMedCrossRefGoogle Scholar
  61. 59.
    Pasquini, J.M., Krawiec, E.F., Soto, J. (1973) Turnover of phosphatidylcholine in cell membranes of adult rat brain. J. Neurochem 21:647–652.PubMedCrossRefGoogle Scholar
  62. 60.
    Browning, E.T. (1971) Free choline formation by cerebral cortical slices from rat brain. Biochim. Biophys. Res. Commun. 45. 1586–1590.CrossRefGoogle Scholar
  63. 61.
    Kosh, J.W., Dick, R.M. and Freeman, JJ. (1980) Choline post-mortem increase: Effect of tissue, agitation, pH and temperature. Life Sciences 27,1953–1959.PubMedCrossRefGoogle Scholar
  64. 62.
    Collier, B., Poon, P. and Salehmoghaddam, S. (1972) The formation of choline and of acetylcholine by brain in vitro. J. Neurochem. 19:51–60.PubMedCrossRefGoogle Scholar
  65. 63.
    Dolezal, V., Tucek, S. (1984) Activation of muscarinic receptors stimulates the release of choline from brain slices. Biochem. Biophvs. Res. Comm. 120:1002–1007.CrossRefGoogle Scholar
  66. 64.
    Bhatnager, S.P., Macintosh, F.C. (1967) Effects of quaternary bases and inorganic cations on acetylcholine synthesis in nervous tissue. Can. J. Physiol. Pharmacol. 45:249–268.CrossRefGoogle Scholar
  67. 65.
    Corradetti, R., Lindmar, R., and Loffelholz, K. (1983) Mobilization of Cellular Choline by Stimulation of Muscarine Receptors in Isolated Chicken Heart and Rat Cortex In Vivo J. Pharmacol. Exptl. Therap. 226:826–832.Google Scholar
  68. 66.
    Hattori, H., Kanfer, J.N. (1984) Synaptosomal phospholipase D: potential role in providing choline for acetylcholine synthesis. Biochem. Biophys Res Comm. 124:945–949.PubMedCrossRefGoogle Scholar
  69. 67.
    Hattori, H., Kanfer, J.N. (1985) Synaptosomal phospholipase D potential role in providing choline for acetylcholine synthesis. J. Neurochem. 45:1578–1584.PubMedCrossRefGoogle Scholar
  70. 68.
    De Haas, G.H., Postema, N.M., Nieuwenhuizen, W., Van Deenen, L.L.M. (1968) Purification and properties of phospholipase A from porcine pancreas. Biochim. Biophvs. Acta 159:103–117.CrossRefGoogle Scholar
  71. 69.
    Zahler, P., Kramer, R. (1981) Isolation of phospholipase A2 from red cell membranes of sheep. Meth. Enzym. 71:690–698.PubMedCrossRefGoogle Scholar
  72. 70.
    Van den Bosch, H. (1980) Intracellular Phospholipases A. Biochim. Biophys. Acta 604, 191–246.PubMedCrossRefGoogle Scholar
  73. 71.
    Cooper, M.F. and Webster, G.R. (1970) The differentiation of phospholipase Al and A2 in rat and human nervous tissues. J. Neurochem. 17:1543–1554.PubMedCrossRefGoogle Scholar
  74. 72.
    Edgar, A.D. and Freysz, L. (1982) Phospholipase activities of rat brain cytosol. Occurrence of phospholipase C activity with phosphatidylcholine. Biochim. Biophvs Acta 711, 224–228.CrossRefGoogle Scholar
  75. 73.
    Kanfer, J.N. (1982) The base exchange enzymes and phospholipase D of rat brain, in Phospholipids in the Nervous System (Horrocks, L.A., Ansell, G.B., and Porcellati, G., eds.), Vol. 1, pp. 13-20, Raven, N.Y.Google Scholar
  76. 74.
    Goracci, G., Francescangeli, E., Horrocks, L.A., Porcellati, G. (1981) The reverse reaction of choline phosphotransferase in rat brain microsomes. A new pathway for degradation of phosphatidylcholine. Biochim. Biophys. Acta 664:373–379.PubMedCrossRefGoogle Scholar
  77. 75.
    McFarlane, M.G., Petterson, L.M.B., Robison, R. (1934) The phosphatase activity of animal tissues. Biochem. J. 28:720–724.Google Scholar
  78. 76.
    Baldwin, J.J., Cornatzer, W.E. (1968) Rat kidney glycerophosphorylcholine diesterase. Biochim. Biophys. Acta 164:193–195.Google Scholar
  79. 77.
    Webster, G.R., Marples, E.A, Thompson, R.H.S. (1957) Glycerophosphorylcholine diesterase activity of nervous tissues. Biochem. J. 65:374–377.PubMedGoogle Scholar
  80. 78.
    Portman, O.W., Illingworth D.R., Alexander, M. (1973) Lysolecithin and sphingosinephosphorylcholine in the metabolism of brain phospholipids of the rhesus monkey (Macaca mulatta): Effects of development. J. Neurochem. 20:1659–1667.PubMedCrossRefGoogle Scholar
  81. 79.
    Gatt, S. (1982) Studies on sphingomyelinase, in Phospholipids in the Nervous System (Horrocks, L.A., Ansell, G.B., and Porcellati, G., eds.), Vol. 1, pp. 181-198, Raven, N.Y.Google Scholar
  82. 80.
    Abra, R.M. and Quinn, P.J. (1975) A novel pathway for phosphatidylcholine catabolism in rat brain homogenates. Biochim. Biophys. Acta 380, 436–441.PubMedCrossRefGoogle Scholar
  83. 81.
    Fisher, S.K., Doherty, F.J., Rowe, C.E. (1982) Deacylation and acylation of phospholipids in the nervous system, in Phospholipids in the Nervous System (Horrocks, L.A., Ansell, G.B., and Porcellati, G., eds.), Vol. 1, pp. 63-74, Raven, N.Y.Google Scholar
  84. 82.
    Bazan, N.G., Bazan, H.E.P., Kennedy, W.G., Joel, C.D. (1971) Regional distribution and rate of production of free fatty acids in rat brain. J. Neurochem. 18, 1387–1393.PubMedCrossRefGoogle Scholar
  85. 83.
    Maire, J.C., Wurtman, R.J., (1985) Effects of electrical stimulation and choline availability on the release and contents of acetylcholine and choline in superfused slices from rat striatum. J. Physiol (Paris) 80:189–195.Google Scholar
  86. 84.
    Vogt, W. (1978) Role of phospholipase A2 in prostaglandin formation. In: Advanceson Prostaglandin and Thromboxane Research, C. Galli ed., pp. 88-95 Raven press, NY.Google Scholar
  87. 85.
    Hochachka, P.W. (1986) Defense strategies against hypoxia and hypothermia. Science 231:234–241.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Steven H. Zeisel
    • 1
  1. 1.Nutrient Metabolism Laboratory, Department of Pathology and PediatricsBoston University School of MedicineBostonUSA

Personalised recommendations