Technicolor and Compositeness

  • Rabindra N. Mohapatra
Part of the Contemporary Physics book series (GTCP)


In the previous chapters we have emphasized that while the success of the SU(2) L × U(1) Y × SU(3) C model has indicated that the unified gauge theories are perhaps the right theoretical framework for the study of quark-lepton interactions, it still leaves a lot of questions unanswered. Some of the outstanding questions are:
  1. (a)

    the nature of the Higgs bosons and the origin of electro-weak symmetry breaking;

  2. (b)

    the apparent superfluous replication of quarks and lepton (and even Higgs bosons if electro-weak symmetry is higher); and

  3. (c)

    the origin of fermion masses which are much smaller than the scale of electro-weak symmetry breaking: for instance, m e, u, d ~ 10-5 W .



Gauge Theory Higgs Boson Gauge Boson Chiral Symmetry Global Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Susskind, Phys. Rev. D20, 2619 (1979);ADSCrossRefGoogle Scholar
  2. [1a]
    S. Weinberg, Phys. Rev. D19, 1277 (1979).ADSCrossRefGoogle Scholar
  3. [2]
    E. Fahri and L. Susskind, Phys. Rev. D20, 3404 (1979);ADSCrossRefGoogle Scholar
  4. [2a]
    S. Dimopoulos, Nucl. Phys. B169, 69 (1980).MathSciNetADSCrossRefGoogle Scholar
  5. [3]
    S. Simopoulos and L. Susskind, Nucl. Phys. B155, 237 (1979);ADSCrossRefGoogle Scholar
  6. [3a]
    E. Eichten and K. Lane, Phys. Lett. 90B, 125 (1980).Google Scholar
  7. [4]
    S. Dimopoulos and J. Ellis, Nucl Phys. B182, 505 (1981).ADSCrossRefGoogle Scholar
  8. [5]
    S. Raby, S. Dimopoulos, and G. Kane, Nucl. Phys. B182, 77 (1981);ADSCrossRefGoogle Scholar
  9. [5a]
    J. Ellis, M. K. Gaillard, D. Nanopoulos, and P. Sikivie, Nucl Phys. B182, 529 (1981);ADSCrossRefGoogle Scholar
  10. [5b]
    M. A. B. Beg, H. D. Politzer, and P. Ramond, Phys. Rev. Lett. 43, 1701 (1979).ADSCrossRefGoogle Scholar
  11. [6]
    J. Calmet, S. Narison, M. Perrottet, and E. DeRafael, Rev. Mod. Phys. 49, 21 (1977);ADSCrossRefGoogle Scholar
  12. [6a]
    T. Kinoshita and W. B. Lindquist, Phys. Rev. Lett. 41, 1573 (1981);ADSCrossRefGoogle Scholar
  13. [6b]
    T. Kinoshita, B. Nizic, and Y. Okamoto, Phys. Rev. Lett. 53, 717 (1984).ADSCrossRefGoogle Scholar
  14. [7]
    R. Barbieri, L. Maiani, and R. Petronzio, Phys. Lett. 96B, 63 (1980);Google Scholar
  15. [7a]
    S. J. Brodsky and S. D. Drell, Phys. Rev. D22, 2236 (1980).ADSGoogle Scholar
  16. [8]
    See, for instance, models of O. W. Greenberg and J. Sucher, Phys. Lett. 99B, 339(1981);Google Scholar
  17. [8a]
    R. Barbieri, R. N. Mohapatra, and A. Masiero, Phys. Lett. 105B, 369 (1981).Google Scholar
  18. [9]
    O. W. Greenberg, R. N. Mohapatra, and M. Yasue, Phys. Rev. Lett. 51, 1737 (1983).ADSCrossRefGoogle Scholar
  19. [10]
    E. J. Eichten, K. D. Lane, and M. E. Peshkin, Phys. Rev. Lett. 50, 811 (1983).ADSCrossRefGoogle Scholar
  20. [11]
    M. K. Gaillard and B. W. Lee, Phys. Rev. D10, 897 (1974);ADSCrossRefGoogle Scholar
  21. [11a]
    G. Beall, M. Bender, and A. Soni, Phys. Rev. Lett. 48, 848 (1982).ADSCrossRefGoogle Scholar
  22. [11b]
    These bounds have been discussed in composite model framework by I. Bars, Nucl. Phys. B198, 269 (1982);CrossRefGoogle Scholar
  23. [11c]
    and for a recent discussion of the conditions under which these bounds may be evaded, seeGoogle Scholar
  24. [11d]
    O. W. Greenberg, R. N. Mohapatra, and S. Nussinov, Phys. Lett. 148B, 465 (1984).Google Scholar
  25. [12]
    B. Weinstein, in TSIMESS Workshop Proceedings, 1983 (edited by T. Goldman et al.), American Institute of Physics, New York, 1983.Google Scholar
  26. [13]
    G. ’t Hooft, in Recent Developments in Gauge Theories (edited by ???), Plenum, New York, 1980, p. 135.CrossRefGoogle Scholar
  27. [14]
    S. L. Alder, Phys. Rev. 177, 2426 (1969);ADSCrossRefGoogle Scholar
  28. [14a]
    R. Jackiw and J. S. Bell, Nuovo Cimeno, 60A, 47 (1969);ADSCrossRefGoogle Scholar
  29. [14b]
    S. L. Alder and W. Bardeen, Phys. Rev. 182, 1517 (1969).ADSCrossRefGoogle Scholar
  30. [15]
    Y. Frishman, A. Schwimmer, T. Banks, and S. Yankielowicz, Nucl. Phys. B177, 157(1981).ADSCrossRefGoogle Scholar
  31. [16]
    J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974).ADSGoogle Scholar
  32. [17]
    J. C. Pati, O. W. Greenberg, and J. Sucher (Phys. Lett. 99B, 339(1981);).Google Scholar
  33. [18]
    T. Applequist and J. Carrazone, Phys. Rev. D11, 2856 (1975).ADSGoogle Scholar
  34. [19]
    J. Preskill and S. Weinberg, Texas preprint, 1981.Google Scholar
  35. [20]
    D. Weingarten, Phys. Rev. Lett. 51, 1830 (1983);ADSCrossRefGoogle Scholar
  36. [20a]
    E. Witten, Phys. Rev. Lett. 51, 2351 (1983);MathSciNetADSCrossRefGoogle Scholar
  37. [20b]
    S. Nussinov, Phys. Rev. Lett. 51, 2081 (1983).ADSCrossRefGoogle Scholar
  38. [21]
    They are analogous to the massless Goldstone-Majoron boson suggested by Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys. Lett. 98B, 265 (1981).Google Scholar
  39. [22]
    For an apparent exception to this argument see an E(6) hypercolor model by Y. Tosa, J. Gibson, and R. E. Marshak, Private communication, 1984.Google Scholar
  40. [23]
    S. Weinberg and E. Witten, Phys. Lett. 96B, 59 (1980);MathSciNetGoogle Scholar
  41. [23a]
    See also E. C.G. Sudarshan, Phys. Rev. D (1981).Google Scholar
  42. [24]
    D. A. Dicus, E. Kolb, V. Teplitz, and R. Wagoner, Phys. Rev. D17, 1529 (1978);ADSCrossRefGoogle Scholar
  43. [24a]
    M. Fukugita, S. Watamura, and M. Yoshimura, Phys. Rev. Lett. 48, 1522 (1982).ADSCrossRefGoogle Scholar
  44. [25]
    L. Abbott and E. Farhi, Phys. Lett. 101B, 69 (1981);Google Scholar
  45. [25a]
    H. Fritzsch and G. Mandelbaum, Phys. Lett. 102B, 319 (1981);Google Scholar
  46. [25b]
    R. Barbieri, R. N. Mohapatra, and A. Masiero, Phys. Lett. 105B, 369 (1981);Google Scholar
  47. For a review see R. N. Mohapatra, Proceedings of the Telemark Neutrino Mass Mini-Conference, 1982, American Institute of Physics, New York, 1982.Google Scholar
  48. [26]
    J. D. Bjorken, Phys. Rev. D19, 335 (1979);MathSciNetADSGoogle Scholar
  49. [26a]
    P. Q. Hung and J. J. Sakurai, Nucl. Phys. B143, 81 (1978).ADSCrossRefGoogle Scholar
  50. [27]
    R. Barbieri and R. N. Mohapatra, Phys. Lett. 120B, 195 (1982).Google Scholar
  51. [28]
    D. Schildknecht, in Proceedings of the Europhysics Study Conference on Electro-weak Effects at High Energies (edited by H. Newman), Plenum, New York, 1983.Google Scholar
  52. [29]
    U. Baur, H. Fritzsch, and H. Faissner, Phys. Lett. 135B, 313 (1984).Google Scholar
  53. [30]
    A. Masiero, R. N. Mohapatra, and R. D. Peccei, Nucl. Phys. B192, 66 (1981).ADSCrossRefGoogle Scholar
  54. [31]
    A. Masiero and R. N. Mohapatra, Phys. Lett. 103B, 343 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations