Skip to main content

Left-Right Symmetric Models of Weak Interactions

  • Chapter
  • 436 Accesses

Part of the book series: Contemporary Physics ((GTCP))

Abstract

While the standard electro-weak model, based on the spontaneously broken local symmetry SU(3) c × SU(2) L × U(1) Y , has been extremely successful in the description of low-energy weak phenomena, it leaves a lot of questions unanswered. One of the unsolved problems is understanding the origin of parity violation in low-energy physics. An interesting approach is to assume that the interaction Lagrangian (or dynamics) is intrinsically left-right symmetric, the asymmetry observed in nature (i.e., β-decay and μ-decay, etc.) arising from the vacuum being noninvariant under parity symmetry. Within the framework of gauge theories this idea has found its realization in the SU(2)L× SU(2)R× U(1) B-L models [1] constructed in 1973–1974. An important feature of this model is that, at low energies, it reproduces all the features of the SU(2) L × U(1) model, and as we move up in energies new effects associated with parity invariance of the Lagrangian (such as a second natural Z-boson, right-handed charged currents, right-handed neutrino) are supposed to appear.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974);

    ADS  Google Scholar 

  2. R. N. Mohapatra and J. G. Pati, Phys. Rev. D11, 566, 2558 (1975);

    ADS  Google Scholar 

  3. G. Senjanovic and R. N. Mohapatra, Phys. Rev. D12, 1502 (1975).

    ADS  Google Scholar 

  4. V. Lyubimov et al., Phys. Lett. 94B, 266 (1980).

    ADS  Google Scholar 

  5. V. Lyubimov, Talk at Leipzig Conference, 1984.

    Google Scholar 

  6. R. Cowsik and J. McClelland, Phys. Rev. Lett. 29, 699 (1972);

    Article  ADS  Google Scholar 

  7. S. S. Gershtein and Ya B. Zeldovich, JETP Lett. 4, 120 (1966).

    ADS  Google Scholar 

  8. R. N. Mohapatra and R. E. Marshak, Phys. Lett. 91B, 222 (1980);

    ADS  Google Scholar 

  9. A. Davidson, Phys. Rev. D20, 776 (1979).

    ADS  Google Scholar 

  10. R. N. Mohapatra and J. C. Pati, Phys. Rev. D11, 566 (1975).

    ADS  Google Scholar 

  11. D. Chang, Nucl. Phys. B214, 435 (1983);

    Article  ADS  Google Scholar 

  12. G. Branco, J. M. Frere, and J. M. Gerard, Nucl. Phys. B221, 317 (1983).

    Article  ADS  Google Scholar 

  13. D. Chang, R. N. Mohapatra, and M. K. Parida, Phys. Rev. Lett. 50, 1072 (1984);

    Article  ADS  Google Scholar 

  14. D. Chang, R. N. Mohapatra, and M. K. Parida, Phys. Rev. D30, 1052 (1984).

    ADS  Google Scholar 

  15. R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980);

    Article  ADS  Google Scholar 

  16. R. N. Mohapatra and G. Senjanovic, Phys. Rev. D21, 165(1981).

    ADS  Google Scholar 

  17. R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett. 44, 1316 (1980).

    Article  ADS  Google Scholar 

  18. V. Barger, E. Ma, and K. Whisnant, Phys. Rev. D26, 2378 (1982);

    ADS  Google Scholar 

  19. I. Liede, J. Malampi, and M. Roos, Nucl. Phys. B146, 157 (1978);

    Article  ADS  Google Scholar 

  20. T. Rizzo and G. Senjanovic, Phys. Rev. D24, 704 (1981);

    ADS  Google Scholar 

  21. X. Li and R. E. Marshak, Phys. Rev. D25, 1886 (1982);

    ADS  Google Scholar 

  22. J. E. Kim, P. Langacker, M. Levine, and H. Williams, Rev. Mod. Phys. 53, 211 (1981).

    Article  ADS  Google Scholar 

  23. M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity (edited by D. Freedman et al.), North-Holland, 1979;

    Google Scholar 

  24. T. Yanagida, KEK lectures, 1979;

    Google Scholar 

  25. R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

    Article  ADS  Google Scholar 

  26. M. Gronau and S. Nussinov, Fermilab preprint, 1982;

    Google Scholar 

  27. M. Gronau and R. Yahalom, Nucl. Phys. B236, 233 (1984).

    Article  ADS  Google Scholar 

  28. M. A. B. Beg, R. Budny, R. N. Mohapatra, and A. Sirlin, Phys. Rev. Lett. 38, 1252 (1977);

    Article  ADS  Google Scholar 

  29. J. Maalampi, K. Mursula, and M. Roos, Nucl. Phys. B207, 233 (1982).

    Article  ADS  Google Scholar 

  30. M. Roos et al., Phys. Lett. 111B, 1 (1982).

    MathSciNet  Google Scholar 

  31. F. W. Koks and J. Vanklinken, Nucl. Phys. A272, 61 (1976).

    ADS  Google Scholar 

  32. J. Carr et al., Phys. Rev. Lett. 51, 627 (1983).

    Article  ADS  Google Scholar 

  33. F. Corriveau et al., Phys. Rev. D24, 2004 (1981).

    ADS  Google Scholar 

  34. T. Yamazaki et al., KEK preprint, 1983.

    Google Scholar 

  35. B. Holstein and S. Treiman, Phys. Rev. D16, 2369 (1977).

    ADS  Google Scholar 

  36. D. Bryman, Talk at Mini-Conference on Low-Energy Tests of Conservation Law, 1983.

    Google Scholar 

  37. T. Yamazaki et al., KEK preprint, 1983.

    Google Scholar 

  38. I.I. Bigi and J. M. Frere, Phys. Lett. 110B, 255 (1982).

    ADS  Google Scholar 

  39. J. Donoghue and B. Holstein, Phys. Lett. 113B, 383 (1982).

    ADS  Google Scholar 

  40. G. Beall, M. Bender, and A. Soni, Phys. Rev. Lett. 48, 848 (1982).

    Article  ADS  Google Scholar 

  41. Earliest use of vacuum saturation of short distance contribution to K L — K s mass difference was by

    Google Scholar 

  42. R. N. Mohapatra, J. S. Rao, and R. E. Marshak, Phys. Rev. 171, 1502 (1968);

    Article  ADS  Google Scholar 

  43. B. L. Ioffe and E. Shabalin, Sov. J. Nucl Phys. 6, 328 (1967).

    Google Scholar 

  44. M. K. Gaillard and B. W. Lee, Phys. Rev. D10, 897 (1974).

    ADS  Google Scholar 

  45. See J. Trampetic, Phys. Rev. D27, 1565 (1983) for a discussion of this point.

    ADS  Google Scholar 

  46. R. N. Mohapatra, G. Senjanovic, and M. Tran, Phys. Rev. D28, 546 (1983);

    ADS  Google Scholar 

  47. G. Ecker, W. Grimus, and H. Neufeld, CERN preprint TH-3551, 1983;

    Google Scholar 

  48. M. Hwang and R. J. Oakes, Fermilab preprint 83/38-THY, 1983;

    Google Scholar 

  49. H. Harari and M. Leurer, Fermilab preprint 83/59-Thy, 1983;

    Google Scholar 

  50. F. Gilman and M. Reno, Phys. Rev. D29, 937 (1974).

    ADS  Google Scholar 

  51. L. Wolfenstein, Nucl. Phys. B160, 1979 (1981);

    Google Scholar 

  52. C. Hill, Phys. Lett. 97B, 275 (1980).

    ADS  Google Scholar 

  53. I.I. Bigi and J. M. Frere, University of Michigan preprint, 1983.

    Google Scholar 

  54. R. N. Mohapatra, F. E. Paige, and D. P. Sidhu, Phys. Rev. D17, 2642 (1978).

    Google Scholar 

  55. A. Datta and A. Raychaudhuri, Calcutta preprint CU PP/82–7, 82–88, 1982;

    Google Scholar 

  56. F. Olness and M. E. Ebel, Wisconsin preprint, 1983;

    Google Scholar 

  57. T. Rizzo, Iowa preprint, 1983.

    Google Scholar 

  58. T. Rizzo and G. Senjanovic, Phys. Rev. D24, 704 (1981);

    ADS  Google Scholar 

  59. W. Y. Keung and G. Senjanovic, Phys. Rev. Lett. 50, 1427 (1983).

    Article  ADS  Google Scholar 

  60. For a more recent detailed study, see

    Google Scholar 

  61. N. G. Deshpande, J. Gunion and B. Kayser, Proceedings of the Telemark Conference (edited by V. Barger), 1984. American Institute of Physics, New York.

    Google Scholar 

  62. K. Winter, CERN preprint (unpublished).

    Google Scholar 

  63. V. Lubimov et al., Phys. Lett. 94B, 266 (1980).

    ADS  Google Scholar 

  64. G. Barbiellini and R. Santoni, Rev. del. Nuovo Cimento (1986).

    Google Scholar 

  65. F. Wagner et al., Argus Collaboration (unpublished).

    Google Scholar 

  66. For a review see

    Google Scholar 

  67. H. H. Williams, Proceedings of the SLAC Summer School (edited by M. Zipf), 1982.

    Google Scholar 

  68. For a pedagogical review see

    Google Scholar 

  69. R. N. Mohapatra, Forschritte Phys. 31, 185 (1983).

    Article  ADS  Google Scholar 

  70. D. Dicus, E. Kolb, V. Teplitz, and R. Wagoner, Phys. Rev. D18, 1819 (1978);

    ADS  Google Scholar 

  71. Y. Chikashige, R. N. Mohapatra, and R. Peccei, Phys. Rev. Lett. 45, 1926 (1981).

    Article  ADS  Google Scholar 

  72. S. Sarkar and A. M. Cooper, CERN preprint, 1984.

    Google Scholar 

  73. A. Kumar and R. N. Mohapatra, Phys. Lett. 150B, 191 (1985).

    ADS  Google Scholar 

  74. R. N. Mohapatra and J. D. Vergados, Phys. Rev. Lett. 47, 1713 (1981);

    Article  ADS  Google Scholar 

  75. C. Piccioto and M. Zahir, Phys. Rev. D26, 2320 (1982).

    ADS  Google Scholar 

  76. B. Kayser, Phys. Rev. D26, 1662 (1982).

    ADS  Google Scholar 

  77. L. Wolfenstein, Phys. Lett. 107B, 77 (1981).

    ADS  Google Scholar 

  78. J. Valle, Phys. Rev. D27, 1672 (1983);

    ADS  Google Scholar 

  79. S. Petcov, Phys. Lett. HOB, 245 (1982);

    Google Scholar 

  80. M. Doi, M. Kenmoku, T. Kotani, H. Nishiura, and E. Taskasugi, Osaka preprint OS-GE-83–48, 1983.

    Google Scholar 

  81. K. M. Case, Phys. Rev. 107, 307 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. D. Chang and R. N. Mohapatra, Phys. Rev. D32, 1248 (1985).

    ADS  Google Scholar 

  83. M. Roncadelli and G Senjanovic, Phys. Lett. 107B, 59 (1983).

    ADS  Google Scholar 

  84. P. Pal, Carnegie-Mellon preprint, 1983.

    Google Scholar 

  85. S. Pakvasa and B. McKellar, Hawaii preprint, 1982.

    Google Scholar 

  86. Y. Hosotani, Nucl. Phys. B191, 411 (1981);

    Article  ADS  Google Scholar 

  87. J. Schecter and J. W. F. Valle, Phys. Rev. D25, 774 (1982).

    ADS  Google Scholar 

  88. For a recent discussion see

    Google Scholar 

  89. S. Sarkar and A. M. Cooper, CERN preprint, 1984.

    Google Scholar 

  90. H. Primakoff and S. P. Rosen, Rep. Prog. Phys. 22, 121 (1959);

    Article  ADS  Google Scholar 

  91. H. Primakoff and S. P. Rosen,Proc. Phys. Soc. (London) 78, 464 (1961);

    Article  ADS  Google Scholar 

  92. A. Halprin, P. Minkowski, H. Primakoff, and S. P. Rosen, Phys. Rev. D13, 2567 (1976);

    ADS  Google Scholar 

  93. M. Doi, T. Kotani, H. Nishiura, K. Okuda, and E. Takasugi, Prog. Theor. Phys. 66, 1765 (1981);

    Article  ADS  Google Scholar 

  94. M. Doi, T. Kotani, H. Nishiura, K. Okuda, and E. Takasugi, Prog. Theor. Phys. 68, 348 (1982) (E);

    Article  ADS  Google Scholar 

  95. W. C. Haxton, G. J. Stehenson, Jr., and D. Strottman, Phys. Rev. Lett. 47, 153 (1981);

    Article  ADS  Google Scholar 

  96. W. C. Haxton, G. J. Stehenson, Jr., and D. Strottman, Phys. Rev. D25, 2360 (1982);

    ADS  Google Scholar 

  97. J. D. Vergados, Phys. Rev. C24, 640 (1981).

    ADS  Google Scholar 

  98. F. Avignone et al., Talk at Fourth Workshop on Grand Unification, held in Philadelphia, 1983;

    Google Scholar 

  99. E. Fiorini, Proceedings of XXI International Conference on High Energy Physics, Paris, 1982.

    Google Scholar 

  100. Riazuddin, R. E. Marshak, and R. N. Mohapatra, Phys. Rev. D24, 1310 (1981).

    ADS  Google Scholar 

  101. W. Caswell, J. Milutinovic, and G. Senjanovic, Phys. Rev. D26, 161 (1982);

    ADS  Google Scholar 

  102. S. Rao and R. Shrock, Stonybrook preprint, 1983.

    Google Scholar 

  103. J. Pasupathy, Phys. Lett. B (to be published);

    Google Scholar 

  104. S. Rao and R. Shrock, Phys. Lett. 116B, 238 (1982);

    ADS  Google Scholar 

  105. U. Sarkar and S. P. Misra, Phys. Rev. D28, 249 (1983).

    ADS  Google Scholar 

  106. K. Chetyrkin et al., Phys. Lett. 99B, 358 (1981);

    MathSciNet  ADS  Google Scholar 

  107. P. G. Sandars, J. Phys. G6, L161 (1980);

    ADS  Google Scholar 

  108. Riazzuddin, Phys. Rev. D25, 885 (1982);

    ADS  Google Scholar 

  109. C. Dover, M. Gal, and J. Richards, Phys. Rev. D27, 1090 (1983);

    ADS  Google Scholar 

  110. W. Alberico et al., Phys. Lett. 114B, 266 (1982);

    ADS  Google Scholar 

  111. A. Kerman et al., MIT preprint, 1983;

    Google Scholar 

  112. R. N. Mohapatra, Proceedings of the Harvard Workshop on N — N Oscillation, 1982.

    Google Scholar 

  113. R. Bionta et al., Phys. Lett. 114B, 266 (1982);

    Google Scholar 

  114. V. L. Narasimhan et al., Chapter V;

    Google Scholar 

  115. Barnes et al., Phys. Rev. Lett. 29, 1132 (1972);

    Article  ADS  Google Scholar 

  116. Poth et al., Nucl. Phys. A294, 435 (1977);

    ADS  Google Scholar 

  117. Roberson et al., Phys. Rev. C16, 1945 (1977);

    ADS  Google Scholar 

  118. C. J. Batty, Rutherford Laboratory preprint, 1981.

    Google Scholar 

  119. J. Cote et al., Phys. Rev. Lett. 48, 13198 (1982).

    Article  Google Scholar 

  120. R. Auerbach et al., Phys. Rev. Lett. 46, 702 (1980).

    Article  ADS  Google Scholar 

  121. Riazzuddin, Phys. Rev. D25, 885 (1982).

    ADS  Google Scholar 

  122. C. Dover, A. Gal, and J. Richards, Phys. Rev. D27, 1090 (1983).

    ADS  Google Scholar 

  123. A. Kerman et al., MIT preprint, 1983.

    Google Scholar 

  124. L. Jones et al., Phys. Rev. Lett. 52, 720 (1984).

    Article  ADS  Google Scholar 

  125. P. K. Kabir, Phys. Rev. Lett. (1983).

    Google Scholar 

  126. S. L. Glashow, Cargese lectures, 1979.

    Google Scholar 

  127. R. N. Mohapatra and R. E. Marshak, Phys. Lett. 94B, 183 (1980).

    ADS  Google Scholar 

  128. M. Baldoceolin et al., CERN preprint, 1983.

    Google Scholar 

  129. A Higgs model realization of this idea has been discussed recently by J. C. Pati, A. Salam, and U. Sarkar, University of Maryland preprint, 1983.

    Google Scholar 

  130. The A(B + L) = 0 result was first realized in a composite model by

    Google Scholar 

  131. H. Harari, R. N. Mohapatra, and N. Seiberg, Nucl Phys. B209, 174 (1982).

    Article  ADS  Google Scholar 

  132. D. Chang, R. N. Mohapatra, J. Gipson, R. E. Marshak, and M. K. Parida, Phys. Rev. D31, 1718 (1985).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohapatra, R.N. (1986). Left-Right Symmetric Models of Weak Interactions. In: Unification and Supersymmetry. Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1928-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1928-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1930-7

  • Online ISBN: 978-1-4757-1928-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics