Advertisement

The SU(2)L × U(1) Model

  • Rabindra N. Mohapatra
Part of the Contemporary Physics book series (GTCP)

Abstract

In this section we will apply the ideas of spontaneously broken gauge theories to construct the first successful model of electro-weak interaction of quarks and leptons. As we discussed in the Introduction the observed universality of the four-Fermi coupling of weak-decay processes suggests the existence of a hidden symmetry of weak interactions, and the symmetry manifests itself not through the existence of degenerate multiplets but through broken local symmetries. The SU(2) L × U(l) model of Glashow, Weinberg, and Salam [1] provides a realization of this idea in the framework of a renormalizable field theory, and the recent discovery of W ± - and Z-bosons in the proton-antiproton collider experiments [2] has proved the correctness of these ideas and given a boost to the study of spontaneously broken non-abelian gauge theories as the way to probe further into the structure of quark-lepton interactions. This will be explored in the subsequent sections.

Keywords

Higgs Boson Gauge Boson Yukawa Coupling Radiative Correction Atomic Parity Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. L. Glashow, Nucl. Phys. 22, 579 (1961);CrossRefGoogle Scholar
  2. A. Salam and J. C. Ward, Phys. Lett. 13, 168 (1964);MathSciNetADSMATHCrossRefGoogle Scholar
  3. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);ADSCrossRefGoogle Scholar
  4. A. Salam, in Elementary Particle Theory (edited by N. Svartholm), Almquist and Forlag, Stockholm, 1968;Google Scholar
  5. For an excellent review, see E. S. Abers and B. W. Lee, Phys. Rep. 9C, 1 (1973).ADSCrossRefGoogle Scholar
  6. [2]
    UA1 Collaboration, G. Arnison et al., Phys. Lett. 122B, 103 (1983);Google Scholar
  7. UA2 Collaboration, M. Banner et al., Phys. Lett. 122B, 476 (1983).Google Scholar
  8. [3]
    J. E. Kim, P. Langacker, M. Levine, and H. H. Williams, Rev. Mod. Phys. 53, 211(1980).ADSCrossRefGoogle Scholar
  9. [4]
    See, for instance,Google Scholar
  10. [4a]
    M. Jonker et al.Phys. Lett. 99B, 265 (1981).Google Scholar
  11. [5]
    B. Kayser, E. Fishbach, S. P. Rosen, and H. Spivack, Phys. Rev. D20, 87 (1979).ADSCrossRefGoogle Scholar
  12. [6]
    C. Y. Prescott et al., Phys. Lett. 77B, 347 (1978).Google Scholar
  13. [7]
    P. Bucksbaum, E. Commins, and L. Hunter, Phys. Rev. Lett. 46, 640 (1981);ADSCrossRefGoogle Scholar
  14. L. M. Barkov, M. Zolotorev, and I. Khriplovich, Sov. Phys. Usp. 23, 713 (1980);ADSCrossRefGoogle Scholar
  15. M. A. Bouchiat et al., Phys. Lett. 117B, 358 (1982);Google Scholar
  16. J. Hollister et al., Phys. Lett. 46, 643 (1981).CrossRefGoogle Scholar
  17. [7a]
    For a review, see Albrecht Bohm, Proceedings of the SLAC Summer Institute (edited by M. Zipf et al.), Stanford, 1983.Google Scholar
  18. [8]
    W. J. Marciano and A. Sirlin, Phys. Rev. D29, 945 (1984).ADSCrossRefGoogle Scholar
  19. [8a]
    For an incomplete list of papers on radiative corrections in gauge theories, see K. I. Aoki, Z. Hioki, R. Kawabe, M. Konuma, and T. Muta, Prog. Theor. Phys. Suppl. 73, 1 (1982);CrossRefGoogle Scholar
  20. S. Sakakibara, Proceedings of the Topical Conference on Radiative Corrections in SU(2)L × U(l) Theories, Trieste, 1983;Google Scholar
  21. For other related work on radiative corrections in SU(2)L × U(l) theories, see W. J. Marciano and A. Sirlin, Phys Rev. D22, 2695 (1980);ADSCrossRefGoogle Scholar
  22. A. Sirlin and W. J. Marciano, Nucl. Phys. B189, 442 (1981);ADSCrossRefGoogle Scholar
  23. F. Antonelli, M. Consoli, and G. Corbo, Phys. Lett. 91B, 90 (1980);Google Scholar
  24. C. Llewellynsmith and J. Wheater, Phys. Lett. 105B, 486 (1981);Google Scholar
  25. J. Wheater and C. Llewellynsmith, Nucl Phys. B208, 27 (1982);ADSCrossRefGoogle Scholar
  26. S. Sakakibara, Phys. Rev. D24, 1149 (1981);ADSGoogle Scholar
  27. M. Veltman, Phys. Lett. 91B, 95 (1980);Google Scholar
  28. R. N. Mohapatra and G. Senjanovic, Phys. Rev. D19, 2165 (1979).ADSGoogle Scholar
  29. [9]
    A. Sirlin and W. Marciano, Nucl. Phys. B189, 442 (1981);ADSCrossRefGoogle Scholar
  30. C. Llewellynsmith and J. Wheater, Phys. Lett. 105B, 486 (1981).Google Scholar
  31. [10]
    G. Arnison et al., Phys. Lett. 126B, 398 (1983);Google Scholar
  32. P. Bagnaia et al., Phys. Lett. 129B, 130 (1983);Google Scholar
  33. G. Arnison et al., Phys. Lett. 129B, 273 (1983).Google Scholar
  34. [11]
    L. DiLella, Lecture Notes, CERN (1985), unpublished.Google Scholar
  35. [12]
    W. Marciano, Talk Presented at Proton-Antiproton Collider Physics, Switzerland, 1984;Google Scholar
  36. W. Marcian and Z. Parsa, Proceedings of the 1982 DPE Summer Study, 1982.Google Scholar
  37. [13]
    S. L. Glashow, J. Illiopoulos, and L. Mariani, Phys. Rev. D2, 1285 (1970).ADSGoogle Scholar
  38. [14]
    M. K. Gaillard and B. W. Lee, Phys. Rev. D10, 897 (1974).ADSCrossRefGoogle Scholar
  39. [15]
    B. R. Martin, E. de Rafael, and J. Smith, Phys. Rev. D1, (1970).Google Scholar
  40. [16]
    R. N. Mohapatra, J. Subbarao, and R. E. Marshak, Phys. Rev. 171, 1502 (1968).ADSCrossRefGoogle Scholar
  41. [17]
    S. Weinberg, Phys. Rev. Lett. 36, 294 (1976);ADSCrossRefGoogle Scholar
  42. A. Linde, JETP Lett. 23, 73 (1976).ADSGoogle Scholar
  43. [18]
    S. Coleman and E. Weinberg, Phys. Rev. D7, 1888 (1973).ADSGoogle Scholar
  44. [19]
    D. A. Dicus and V. S. Mathur, Phys. Rev. D7(1973);Google Scholar
  45. B. W. Lee, C. Quigg, and H. Thacker, Phys. Rev. D16, 1519 (1977);ADSCrossRefGoogle Scholar
  46. M. Veltman, Acta Phys. Polon. B8, 475 (1977).Google Scholar
  47. [20]
    T. Rizzo, Phys. Rev. D22, 722 (1980).MathSciNetADSGoogle Scholar
  48. [21]
    H. Georgi, S. L. Glashow, M. Machachek, and D. Nanopoulos, Phys. Rev. Lett. 40, 692 (1978);ADSCrossRefGoogle Scholar
  49. See also H. Gordon, W. Marciano, F. E. Paige, P. Grannis, S. Naculich, and H. H. Williams, Proceedings of the 1982 DPF Summer Study on Elementary Particle Physics, Snowmass, 1982, p. 161.Google Scholar
  50. [22]
    L. Hall and M. Wise, Nucl. Phys. B187, 397 (1981);ADSCrossRefGoogle Scholar
  51. M. Barnett, G. Senjanovic, and D. Wyler, ITP Santa Barbara preprint, (1984);Google Scholar
  52. J. M. Frere, M. Gavela, and J. Varmaseren, Phys. Lett. 125, 275 (1983).Google Scholar
  53. [23]
    S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979);ADSCrossRefGoogle Scholar
  54. F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979);ADSCrossRefGoogle Scholar
  55. A. H. Weldon and A. Zee, Nucl. Phys. B173, 269 (1980);ADSCrossRefGoogle Scholar
  56. R. N. Mohapatra, Proceedings of the First Workshop on Grand Unificationin (edited by P. Frampton, H. Georgi, and S. L. Glashow), Math Sci. Press, Brookline, MA, 1980.Google Scholar
  57. For excellent recent reviews, see J. D. Vergados, Phys. Rep. (1986) (to appear).Google Scholar
  58. G. Costa and M. Zwirner, Rev. Nuovo. Cim. (1886) (to appear).Google Scholar
  59. [24]
    C. Burges and H. Schnitzer, Nucl. Phys. B228, 464 (1983).ADSCrossRefGoogle Scholar
  60. [25]
    M. K. Gaillard, Proceedings of the Workshop on Intense Medium Energy Sources of Strangeness in(edited by T. Goldman, H. Haber, and H. F. Sadrozinski), (AIP), New York 1983, p. 54.Google Scholar
  61. [26]
    The latest experimental situation in weak interaction has recently been summarized in G. Barbiellini and C. Santoni, Rev. Nuovo Cim. (1986) (to appear).Google Scholar
  62. Particle Data Group, Rev. Mod. Phys. 56, S1 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations