Local Supersymmetry (N = 1)

  • Rabindra N. Mohapatra
Part of the Contemporary Physics book series (GTCP)


In this chapter we will study the implications of the hypothesis that the parameters of supersymmetry transformation ε become a function of space-time, i.e., ε = ε(x). We know, from Chapter 1, that invariance under local symmetry requires new fields in the theory which have spin 1, and have the same number of components as the number of independent parameters in the group. In analogy, local supersymmetry will require the introduction of the spin 3/2 field which is the Majorana type. This will bring us into a completely new domain of particle physics where new spin 3/2 elementary fields interact with ordinary matter fields. Furthermore, there will also be analogs of the Higgs mechanism once supersymmetry is spontaneously broken (the so-called super-Higgs effect). There is, however, a much more profound aspect to local supersymmetry. Once the spin 3/2 fields are introduced, to make the theory supersymmetric in the high spin sector, it will turn out that we will require a massless spin 2 field which can be identified with the graviton field g μυ , thus “unifying” gravitation with the other three forces of nature. This discovery was made independently by Freedman, Ferrara, and Van Niuen-huizen [1], and by Deser and Zumino [1], and opened up a whole new possibility, not only of unification of gravity with particle physics [2] but also of new consequences for particle physics with supersymmetry. We will call the spin 3/2 particle gravitino and denote it by a Majorana field Ψ μ .


Vector Multiplet Gauge Field Supersymmetry Transformation Matter Coupling Conformal Supergravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Freedman, S. Ferrara, and P. Van Nieuwenhuizen, Phys. Rev. D13, 3214 (1976);MathSciNetADSGoogle Scholar
  2. [1]a
    S. Deser and B. Zumino, Phys. Lett. 62B, 335 (1976).MathSciNetGoogle Scholar
  3. [2]
    For a review seeGoogle Scholar
  4. [2]a
    P. Van Nieuwenhuizen, Phys. Rep. 68, 189 (1981).MathSciNetADSCrossRefGoogle Scholar
  5. [3]
    C. Misner, K. S. Thorne, and J. Wheeler, Gravitation, Freeman, San Francisco, 1970;Google Scholar
  6. [3]a
    S. Weinberg, Gravitation and Cosmology, Wiley, New York, 1972.Google Scholar
  7. [4]
    M. Kaku, P. K. Townsend, and P. Van Nieuwenhuizen, Phys. Rev. D17, 3179 (1978).MathSciNetADSGoogle Scholar
  8. [5]
    T. Kugo and S. Uehara, Nucl. Phys. B222, 125 (1983).ADSCrossRefGoogle Scholar
  9. [6]
    K. S. Stelle and P. C. West, Nucl. Phys. B145, 175 (1978);ADSCrossRefGoogle Scholar
  10. [6]a
    P. Van Nieuwenhuizen and S. Ferrara, Phys. Lett. B76, 404 (1978);MathSciNetGoogle Scholar
  11. [6]b
    E. Cremmer, S. Ferrara, L. Girardello and A. van Proeyen, Phys. Lett. 116B, 231 (1982);Google Scholar
  12. [6]c
    E. Cremmer, S. Ferrara, L. Girardello and A. van Proeyen, Nucl. Phys. B212, 413 (1983);ADSCrossRefGoogle Scholar
  13. [6]d
    E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello, and P. Van Nieuwenhuizen, Nucl. Phys. B147, 105 (1979);ADSCrossRefGoogle Scholar
  14. [6]e
    A. H. Chamseddine, R. Arnowitt, and P. Nath, Phys. Rev. Lett. 49, 970 (1982).ADSCrossRefGoogle Scholar
  15. [7]
    M. Sohnius and P. West, Phys. Lett. 105B, 353 (1981).Google Scholar
  16. [8]
    C. S. Aulakh, M. Kaku, and R. N. Mohapatra, Phys. Lett. 126B, 183 (1983);Google Scholar
  17. [8]a
    K. T. Mahanthappa and G. Stabler, VPI preprint, 1985.Google Scholar
  18. [9]
    P. Breitenlohner, Phys. Lett. 67B, 49 (1977).Google Scholar
  19. [10]
    B. de Wit and P. Van Nieuwenhuizen, Nucl. Phys. B139, 216 (1978).ADSCrossRefGoogle Scholar
  20. [11]
    V. O. Rivelles and J. G. Taylor, Phys. Lett. 113B, 467 (1982).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations