Phenomenology of Supersymmetric Models

  • Rabindra N. Mohapatra
Part of the Contemporary Physics book series (GTCP)


In the previous three chapters we have laid the foundation for applying the ideas of supersymmetry to building models of particle physics. At present there exists a successful (at low energies) model of electro-weak and strong interactions—the standard SU(2) L × U(1) Y × SU(3) C model. The recent discovery of W- and Z-bosons at the CERN SppS machine has proved the correctness of this theory. Also, everybody believes that there is more physics beyond the standard model. In Chapters 6, 7, and 8 we have discussed some interesting classes of models that provide examples of possible new physics. In this chapter we consider the possibility that new physics may be related to supersymmetry. Specifically, if elementary scalar bosons are to be part of the unified gauge theory framework, existence of a hidden supersymmetry might not only make their field theory better “behaved” but also establish a connection between fermions and bosons. As already emphasized in such a case, supersymmetry must be broken by soft terms since we do not observe any degenerate multiplets containing bosons and fermions. In this first section we will present a supersymmetric extension of the standard model. All fermions and bosons of the standard model must be accompanied by their super-symmetric partners which are bosons and fermions, respectively.


Decay Mode Supersymmetry Breaking Supersymmetric Model Weak Decay Dirac Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    There exist several excellent recent reviews of the subject:Google Scholar
  2. [1a]
    H. Haber and G. Kane, Phys. Rep. 117, 76 (1984).Google Scholar
  3. [2]
    H. P. Nilles, Phys. Rep. 110, 1 (1984);ADSCrossRefGoogle Scholar
  4. [2a]
    R. Arnowitt, A. Chamseddine, and P. Nath, N = 1 Supergravity, World Scientific, Singapore, 1984.Google Scholar
  5. [3]
    P. Fayet, Nucl. Phys. B90, 104 (1975);ADSCrossRefGoogle Scholar
  6. [3a]
    R. K. Kaul and P. Majumdar, Nucl Phys. B199, 36 (1982).ADSCrossRefGoogle Scholar
  7. [4]
    C. S. Aulakh and R. N. Mohapatra, Phys. Lett. 121B, 147 (1983);Google Scholar
  8. [4a]
    L. Hall and M. Suzuki, Nucl. Phys. B231, 419 (1984).ADSCrossRefGoogle Scholar
  9. For subsequent work, seeGoogle Scholar
  10. [4b]
    G. G. Ross and J. W. F. Valle, Phys. Lett. 151B, 375 (1985).Google Scholar
  11. [5]
    CELLO: H. Behread et al., Phys. Lett. 114B, 287 (1982);Google Scholar
  12. [5a]
    JADE: W. Bartel et al., Phys. Lett. 114B, 211 (1982);Google Scholar
  13. [5b]
    MARK J: D. Barber et al., Phys. Rev. Lett. 45, 1904 (1981);Google Scholar
  14. [5b]
    TASSO: R. Brandelik et al., Phys. Lett. 117B, 365 (1982).Google Scholar
  15. [6]
    M. K. Gaillard, L. Hall, and I. Hinchliffe, Phys. Lett. 116B, 279 (1982);Google Scholar
  16. [6a]
    M. Kuroda, K. Ishikawa, T. Kobayashi, and S. Yamada, Phys. Lett. 127B, 467 (1983).Google Scholar
  17. [7]
    L. Gladney et al., Phys. Rev. Lett. 51, 2253 (1983);ADSCrossRefGoogle Scholar
  18. [7a]
    E. Fernandez et al., Phys. Rev. Lett. 52, 22 (1984).ADSCrossRefGoogle Scholar
  19. [8]
    R. M. Barnett, H. E. Haber, and K. Lackner, Phys. Lett. 126B, 64 (1983).Google Scholar
  20. [9]
    For an exhaustive study seeGoogle Scholar
  21. [9a]
    E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Fermilab preprint, 1984.Google Scholar
  22. [10]
    H. Haber and G. Kane, Nucl Phys. B232, 333 (1984).ADSCrossRefGoogle Scholar
  23. [11]
    B. Kayser, Private communication, 1983.Google Scholar
  24. [12]
    M. Chanowitz and S. Sharpe, Phys. Lett. 126B, 225 (1983);Google Scholar
  25. [12a]
    A. Mitra and S. Ono, CERN preprint, 1983.Google Scholar
  26. [13]
    W. Y. Keung and A. Khare, Phys. Rev. D (1984).Google Scholar
  27. [13a]
    G. Arnison et al., Phys. Lett. 139B, 115 (1984).Google Scholar
  28. [13b]
    G. Kane and J. Leveille, Phys. Lett. 112B, 227 (1982);Google Scholar
  29. [13c]
    E. Reya and D. P. Roy, Phys. Rev. Lett. 53, 881 (1984);ADSCrossRefGoogle Scholar
  30. [13d]
    J. Ellis and H. Kowalski, CERN preprint, 1984.Google Scholar
  31. [14]
    S. Weinberg, Phys. Rev. Lett. 50, 387 (1983);MathSciNetADSCrossRefGoogle Scholar
  32. [14a]
    V. Barger, R. W. Robinett, W. Y. Keung, and R. J. N. Phillips, Phys. Lett. 131B, 372 (1983);Google Scholar
  33. [14b]
    A. Chamseddine, R. Arnowitt, and P. Nath, Phys. Rev. Lett. 49, 970 (1972);ADSCrossRefGoogle Scholar
  34. [14c]
    D. A. Dicus, S. Nandi, W. Repko, and X. Tata, Phys. Rev. Lett. 51, 1030 (1983);ADSCrossRefGoogle Scholar
  35. [14d]
    D. A. Dicus, S. Nandi, W. Repko, and X. Tata, Phys. Rev. D29, 67 (1984);ADSGoogle Scholar
  36. [14e]
    J. Ellis, J. Hagelin, D. V. Nanopoulos, and M. Srednicki, Phys. Lett. 127B, 233 (1983).Google Scholar
  37. [15]
    J. Baily et al., Nucl. Phys. B150 (1979).Google Scholar
  38. [16]
    P. Fayet, in Unification of the Fundamental Particle Interactions, (edited by S. Ferrara et al.) Plenum, New York, 1980, p. 587;CrossRefGoogle Scholar
  39. [16a]
    J. Ellis, J. Hagelin, and D. V. Nanopoulos, Phys. Lett. 116B, 283 (1982);Google Scholar
  40. [16b]
    R. Barbieri and L. Maiani, Phys. Lett. 117B, 203 (1982).Google Scholar
  41. [17]
    J. Ellis and D. V. Nanopoulos, Phys. Lett. 110B, 44 (1982);Google Scholar
  42. [17a]
    R. Barbieri and R. Gatto, Phys. Lett. 110B, 211 (1982);Google Scholar
  43. [17b]
    ;T. Inami and C. S. Lim, Nucl. Phys. B207, 533 (1982);ADSCrossRefGoogle Scholar
  44. [17c]
    B. A. Cambell, Phys. Rev. D28, 209 (1983);ADSCrossRefGoogle Scholar
  45. [17d]
    J. Donoghue, H. P. Nilles, and D. Wyler, Phys. Lett. 128B, 55 (1983);Google Scholar
  46. [17e]
    M. Suzuki, Phys. Lett. 115B, 40(1982);Google Scholar
  47. [17f]
    E. Franco and M. Mangano, Phys. Lett. 135B, 40 (1982).Google Scholar
  48. [18]
    M. Suzuki, Phys. Lett. 115B, 40 (1982);Google Scholar
  49. [18a]
    M. Duncan, Nucl Phys. B214, 21 (1983).ADSCrossRefGoogle Scholar
  50. [19]
    T. K. Kuo and N. Nakagawa, Nuovo Cim. Lett. 36, 560 (1983);CrossRefGoogle Scholar
  51. [19a]
    R. Barbieri and L. Maiani, Nucl. Phys. B224, 32 (1983);ADSCrossRefGoogle Scholar
  52. [19b]
    C. S. Lim, T. Inami, and N. Sakai, Phys. Rev. D29, 1488 (1984).ADSGoogle Scholar
  53. [20]
    J. Ellis and J. Hagelin, Nucl. Phys. B217, 189 (1983).ADSCrossRefGoogle Scholar
  54. [21]
    M. K. Gaillard, Y. C. Kao, I. H. Lee, and M. Suzuki, Phys. Lett. 123B, 241 (1983).Google Scholar
  55. [22]
    A. Raichoudhury et al., CERN preprint, 1984;Google Scholar
  56. [22a]
    P. Langacker and B. Sathiapalan, University of Pennsylvania preprint, 1984.Google Scholar
  57. [23]
    C. Nappi and B. Ovrut, Phys. Lett. 113B, 1751 (1982);Google Scholar
  58. [23a]
    M. Dine and W. Fishier, Phys. Lett. 110B, 227 (1982);Google Scholar
  59. [23b]
    L. Alvarez-Gaume, M. Claudson and M. Wise, Nucl. Phys. B207, 96 (1982);ADSCrossRefGoogle Scholar
  60. [23c]
    J. Ellis, L. Ibanez, and G. Ross, Phys. Lett. 113B, 283 (1982);Google Scholar
  61. [23d]
    R. Barbieri, S. Ferrara, and D. Nanopoulos, Z. Phys. C13, 267 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Rabindra N. Mohapatra
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations