Advertisement

The Use of Observations in Calibrating and Validating Carbon Cycle Models

  • Ian G. Enting
  • Graeme I. Pearman

Abstract

To determine the most appropriate data for calibrating and validating carbon cycle models, it is first necessary to determine the aims of the modeling study. Among the main uses of such studies, we can identify in particular:
  1. 1.

    Prediction of future atmospheric CO2 concentrations (to assess climatic and biological impacts)

     
  2. 2.

    Reconstruction of past atmospheric CO2 concentrations (to determine the driving force when attempting to analyze past climatic records in the search for a response to changes in CO2)

     
  3. 3.

    Interpretation of current measurements involving the carbon cycle (to determine the major carbon fluxes)

     
  4. 4.

    Cross-comparisons of models with different degrees of resolution, including different dimensionality (to determine which models are most appropriate for particular studies).

     

Keywords

Standard Deviation Carbon Cycle Ocean Model Tree Ring Atmospheric Carbon Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacastow, R. B. and C. D. Keeling. 1973. Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle. II. Changes from AD 1700 to 2100 as deduced from a geochemical model. In G. M. Woodwell and E. V. Pecan (eds.), Carbon and the Biosphere, CONF-729519, pp. 86–135. U.S. Atomic Energy Commission, Washington, D.C.Google Scholar
  2. Barnola, J. M., D. Raynaud, A. Neftel, and H. Oeschger. 1983. Comparison of CO, measurements by two laboratories on air bubbles in polar ice. Nature 303: 410–413.CrossRefGoogle Scholar
  3. Bodhaine, B. A. and J. M. Harris (eds.). 1982. Geophysical Monitoring for Climatic Change, No. 10, Summary Report 1981. U.S. Department of Commerce, NOAA/ ERL/GMCC, Boulder, Colorado.Google Scholar
  4. Bolin, B., and W. Bischof. 1970. Variations of the carbon dioxide content of the atmosphere in the northern hemisphere. Tellus 22: 431–442.CrossRefGoogle Scholar
  5. Bolin, B., A. Björkström, K. Holmen, and B. Moore. 1983. The simultaneous use of tracers for ocean circulation studies. Tellus 35B: 206–236.Google Scholar
  6. Bolin, B., A. Björkström, C. D. Keeling, R. B. Bacastow, and U. Siegenthaler. 1981. In B. Bolin (ed.), Carbon Cycle Modelling, Scope 16, pp. 1–28. John Wiley & Sons, New York and Chichester, England.Google Scholar
  7. Bolin, B. and C. D. Keeling. 1963. Large-scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide. J. Geophys. Res. 68: 3899–3920.Google Scholar
  8. Broecker, W. S., T.-H. Peng, and R. Engh. 1980. Modeling the carbon system. Radiocarbon 22: 565–598.Google Scholar
  9. Broecker, W. S., T. Takahashi, H. J. Simpson, and T.-H. Peng. 1979. Fate ofGoogle Scholar
  10. fossil fuel carbon dioxide and the global carbon budget. Science 206:409–418. Callender, G. S. 1958. On the amount of carbon dioxide in the atmosphere. Tellus 10: 243–248.Google Scholar
  11. Deacon, E. L. 1977. Gas transfer to and across an air-water interface. Tellus 29: 363–374.CrossRefGoogle Scholar
  12. Deacon, E. L. 1981. Sea-air gas transfer: The wind-speed dependence. Boundary-Layer Meteorol. 21: 31–37.Google Scholar
  13. Deluisi, J. J. (ed.). 1981. Geophysical Monitoring for Climatic Change, No. 9, Summary Report 1980. U.S. Department of Commerce, NOAA/ERL/GMCC, Boulder, Colorado.Google Scholar
  14. Enting, I. G. 1983. Error analysis for parameter estimates from constrained inversion. CSIRO Division of Atmospheric Research Technical Paper No. 2. Commonwealth Scientific and Industrial Research Organization, Australia.Google Scholar
  15. Enting, I. G. 1984. Preliminary studies with a two-dimensional model using transport fields derived from a GCM. Paper presented at the CSIRO-ABM Meeting on the Scientific Application of Baseline Observations of Atmospheric Composition, November 7–9, 1984, Aspendale, Australia.Google Scholar
  16. Enting, I. G. 1985a. Principles of constrained inversion in the calibration of carbon cycle models. Tellus (37B: 7–27 ).Google Scholar
  17. Enting, I. G. 1985b. A lattice statistics model for the age distribution of air bubbles in polar ice. Nature 315: 654–655.CrossRefGoogle Scholar
  18. Enting, I. G. and G. I. Pearman. 1982. Description of a one-dimensional global carbon cycle model. CSIRO Division of Atmospheric Physics Technical Paper No. 42. Commonwealth Scientific and Industrial Research Organization, Australia.Google Scholar
  19. Enting, I. G. and G. I. Pearman. 1983. Refinements to a one-dimensional carbon cycle model. CSIRO Division of Atmospheric Research Technical Paper No. 3. Commonwealth Scientific and Industrial Research Organization, Australia.Google Scholar
  20. Francey, R. J. and G. D. Farquhar. 1982. An explanation of 13C/12C variations in tree rings. Nature 297: 28–31.CrossRefGoogle Scholar
  21. Fraser, P. J., P. Hyson, I. G. Enting, and G. I. Pearman. 1983a. Global distribution and southern hemisphere trends of atmospheric CC1,F. Nature 302: 692–695.CrossRefGoogle Scholar
  22. Fraser, P. J., G. I. Pearman, and P. Hyson. 1983b. The global distribution of atmospheric carbon dioxide 2. A review of provisional background observations, 1978–1980. J. Geophys. Res. 88C: 3591–3598.Google Scholar
  23. Frenkiel, F. N., and D. W. Goodall (eds.). 1978. Simulation Modelling of Environmental Problems, Scope 9. John Wiley & Sons, New York and Chichester, England.Google Scholar
  24. Fung, I., K. Prentice, E. Matthews, J. Lerner, and G. Russell. 1983. Three-dimensional tracer model study of atmospheric CO,: response to seasonal exchanges with the terrestrial biosphere. J. Geophys. Res. 88C: 1281–1294.Google Scholar
  25. Houghton, R. A., J. E. Hobbie, J. M. Melillo, B. Moore, B. J. Peterson, G. R. Shaver, and G. M. Woodwell. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO, to the atmosphere. Ecol. Monogr. 53: 235–262.Google Scholar
  26. Hyson, P., P. J. Fraser, and G. I. Pearman. 1980. A two-dimensional transport simulation model for trace atmospheric constituents. J. Geophys. Res. 85C: 4443–4455.Google Scholar
  27. Jackson, D. D. 1972. Interpretation of inaccurate, insufficient, and inconsistent data. Geophys. J. R. Astron. Soc. 28: 97–109.Google Scholar
  28. Junge, C. E. and G. Czeplak. 1968. Some aspects of the seasonal variation of carbon dioxide and ozone. Tellus 20: 422–434.CrossRefGoogle Scholar
  29. Keeling, C. D., R. B. Bacastow, and T. P. Whorf. 1982. Measurements of the concentration of carbon dioxide at Mauna Loa observatory, Hawaii. In W. C. Clark (ed.), Carbon Dioxide Review 1982, pp. 377–385. Clarendon Press, Oxford, England.Google Scholar
  30. Keeling, C. D., W. G. Mook, and P. P. Tans. 1979. Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277: 121–123.CrossRefGoogle Scholar
  31. Laurmann, J. A. and R. M. Rotty. 1983. Exponential growth and atmospheric carbon dioxide. J. Geophys. Res. 88C: 1295–1299.Google Scholar
  32. Laurmann, J. A. and J. R. Spreiter. 1983. The effects of carbon cycle model error in calculating future atmospheric carbon dioxide levels. Climatic Change 5: 145–181.Google Scholar
  33. Liss, P. 1983. Gas transfer: experiments and geochemical implications. In P. Liss and W. G. N. Slinn (eds.), Air-Sea Exchange of Gases and Particles. 241–298 D. Reidel, Dordrecht.CrossRefGoogle Scholar
  34. Moore, B., R. D. Boone, J. E. Hobbie, R. A. Houghton, J. M. Melillo, B. J. Peterson, G. R. Shaver, C. J. Vörösmarty, and G. M. Woodwell. 1981. A simple model for analysis of the role of terrestrial ecosystems in the global carbon budget. In B. Bolin (ed.), Carbon Cycle Modelling, Scope 16, pp. 365–385. John Wiley & Sons, New York and Chichester, England.Google Scholar
  35. Mosteller, F. and J. W. Tukey. 1977. Data Analysis and Regression: A Second Course in Statistics. Addison-Wesley, Reading, Massachusetts.Google Scholar
  36. Muntz, A. and E. Aubin. 1886. Recherches sur l’acide carbonique de l’air. Du Cap horn et de l’ocean Atlantique. Recherches sur la constitution chimique de l’atmosphere. Tome 3. Gaunthier-Villars, Imprimeur-Libraire, Paris.Google Scholar
  37. Neftel, A., E. Moor, H. Oeschger and B. Stauffer. 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315: 45–47.CrossRefGoogle Scholar
  38. O’Brien, K. 1979. Secular variations in the production of cosmogenic isotopes in the earth’s atmosphere. J. Geophys. Res. 84: 423–431.Google Scholar
  39. Oeschger, H. and M. Heimann. 1983. Uncertainties of predictions of future atmospheric CO, concentrations. J. Geophys. Res. 88C: 1258–1262.Google Scholar
  40. Oeschger, H., U. Siegenthaler, U. Schotterer, and A. Gugelmann. 1975. A box-diffusion model to study the carbon dioxide exchange in nature. Tellus 27: 168–192.CrossRefGoogle Scholar
  41. Olson, J. S. 1982. Earth’s vegetation and atmospheric carbon dioxide. In W. C. Clark (ed.), Carbon Dioxide Review 1982, pp. 388–398. Clarendon Press, Oxford, England.Google Scholar
  42. Pearman, G. I. 1980. Preliminary studies with a new global carbon cycle model. In Carbon Dioxide and Climate: Australian Research, pp. 79–91. Australian Academy of Science, Canberra.Google Scholar
  43. Pearman, G. I. and P. Hyson. 1980. Activities of the global biosphere as reflected in atmospheric CO2 records. J. Geophys. Res. 85C: 4468–4474.Google Scholar
  44. Pearman, G. I., P. Hyson, and P. J. Fraser. 1983. The global distribution of atmospheric carbon dioxide: 1. Aspects of observations and modelling. J. Geophys. Res. 88C: 3581–3590.Google Scholar
  45. Peng, T. -H. and W. S. Broecker. 1984. Ocean life cycles and the atmospheric CO, content. J. Geophys. Res. 89C: 8170–8180.Google Scholar
  46. Peng, T.-H., W. S. Broecker, H. D. Freyer, and S. Trumbore. 1983. A deconvolution of the tree-ring-based S”C record. J. Geophys. Res. 88C: 3609–3620.Google Scholar
  47. Peng, T.-H., W. S. Broecker, G. G. Mathieu, and Y.-H. Li. 1979. Radon evasion rates in the Atlantic and Pacific Oceans as determined during the GEOSECS programs. J. Geophys. Res. 84C: 2471–2486.Google Scholar
  48. Pittock, A. B. 1983. The atmospheric effects of nuclear war. In M. Denborough (ed.), Australia and Nuclear War, pp. 136–160. Croom Helm, Fyshwick, ACT.Google Scholar
  49. Prather, M. 1984. Simulations of chlorofluorocarbons with a three-dimensional model. Paper presented at the CSIRO-ABM Meeting on the Scientific Application of Baseline Observations of Atmospheric Composition, November 7–9, 1984, Aspendale, Australia.Google Scholar
  50. Rodgers, C. D. 1977. Statistical principles of inversion theory. In A. Deepak (ed.), Inversion Methods in Atmospheric Remote Sounding, pp. 117–134. Academic Press, New York.Google Scholar
  51. Rust, B. W., R. M. Rotty and G. Marland. 1979 Inferences drawn from atmospheric CO, data. J. Geophys Res. 84C: 3115–3122.CrossRefGoogle Scholar
  52. Schwander, J. and Stauffer, B. 1984. Age difference between polar ice and air trapped in its bubbles. Nature 311: 45–47.CrossRefGoogle Scholar
  53. Siegenthaler, U. 1983. Uptake of excess CO, by an outcrop-diffusion model of the ocean. J. Geophys. Res. 88C: 3599–3608.Google Scholar
  54. Stanhill, G. 1982. The Montsouris series of carbon dioxide abundance: An archival study of spectroscopic data. In W. C. Clark (ed.), Carbon Dioxide Review: 1982, pp. 385–388. Clarendon Press, Oxford, England.Google Scholar
  55. Stokes, C. M. 1982. Atmospheric carbon dioxide abundance: An archival study of spectroscopic data. In W. C. Clark (ed.), Carbon Dioxide Review 1982, pp. 385–388. Clarendon Press, Oxford, England.Google Scholar
  56. Twomey, S. 1977. Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements. Elsevier, Amsterdam.Google Scholar
  57. Viecelli, J. A., H. W. Ellsaesser, and J. E. Burt. 1981. A carbon cycle model with latitude dependence. Climatic Change 3: 281–302.Google Scholar
  58. World Meterological Organization. 1983. Report of the WMO (CAS) meeting of experts on the CO2 concentrations from pre-industrial times to IGY. Boulder, Colorado, June 22–25, 1983. WMO, Geneva.Google Scholar
  59. Wunsch, C. 1978. The North Atlantic general circulation west of 50°W determined by inverse methods. Rev. Geophys. Space Phys. 16: 583–620.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Ian G. Enting
  • Graeme I. Pearman

There are no affiliations available

Personalised recommendations