Skip to main content

Calibrating Ocean Models by the Constrained Inverse Method

  • Chapter
The Changing Carbon Cycle

Abstract

From the results of several investigations (Keeling 1973; Björkström 1980; Killough and Emanuel 1981; Björkström, this volume; Bolin 1983; Bolin et al. 1983, p. 231; Fiadeiro 1983; Bolin, this volume) the approach of using highly aggregated box models (less than 15 boxes for the world oceans) appears to be inadequate for the task of estimating accurately the current rate at which the ocean is absorbing excess atmospheric CO2. However, general circulation models of the entire ocean are not at hand; therefore, what is needed is a new generation of models that can serve usefully in the interim to study the important question of the current rate of oceanic CO2 uptake. Further, such models may have other applications, not the least of which may be their use as diagnostic tools for general circulation models of the ocean (see also Bryan et al. 1975; Sarmiento, this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bainbridge, A. E. 1981a. GEOSECS, Atlantic Expedition, Vol. 1, Hydrographic Data. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Bainbridge, A. E. 1981b. GEOSECS, Atlantic Expedition, Vol. 2, Sections and Profiles. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Baumgartner, A. and E. Reichel. 1975. The World Water Balance. Elsevier–North Holland, Amsterdam and New York.

    Google Scholar 

  • Björck, A. 1981. Least squares methods in physics and engineering. CERN—Organization Europeenne pour la Recherche Nucleaire. CERN [Rep.] 81:16, Geneva, Switzerland.

    Google Scholar 

  • Björkström, A. 1980. On the inadequacy of one-dimensional ocean models for the global carbon cycle. Report CM-51. Department of Meteorology, University of Stockholm, Stockholm, Sweden.

    Google Scholar 

  • Björkström, A. On numerical instability in underdetermined systems. (in preparation).

    Google Scholar 

  • Bolin, B. 1983. Changing global biogeochemistry. In P. Brewer, ed., The Future of Oceanography, 50th Anniversary Volume, pp. 305–326. Woods Hole Oceanographic Institution. Springer-Verlag, New York.

    Google Scholar 

  • Bolin, B., A. Björkström, K. Holmen, and B. Moore. 1983. The simultaneous use of tracers for ocean circulation studies. Tellus 35B: 206–236.

    Google Scholar 

  • Bolin, B., A. Björkström, K. Holmen, and B. Moore. The analysis of the general circulation of the ocean by the simultaneous use of physical, chemical, and biological data (in preparation).

    Google Scholar 

  • Brewer, P. G. 1978. Direct observation of the oceanic CO, increase. Geophys. Res. Lett. 12: 997–1000.

    Google Scholar 

  • Broecker, W. S. 1979. A revised estimate for the radiocarbon age of North Atlantic deep water. J. Geophys. Res. 84: 3218–3226.

    Google Scholar 

  • Broecker, W. S., R. Gerard, M. Ewing, and B. C. Heezen. 1960. Natural radiocarbon in the Atlantic Ocean. J. Geophys. Res. 65: 2903–2931.

    Google Scholar 

  • Broecker, W. S., D. W. Spencer, and H. Craig. 1982. GEOSECS, Pacific Expedition, Vol. 3, Hydrographic Data. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Bunker, A. F. 1980. Trends of variables and energy fluxes over the Atlantic Ocean from 1948 to 1972. Mon. Weather Rev. 108: 720–732.

    Google Scholar 

  • Bryan, K., S. Manabe, and R. C. Pacanowski. 1975. A global ocean-atmosphere climate model. Part II. The oceanic circulation. J. Phys. Oceanogr. 5: 30–46.

    Google Scholar 

  • Craig, H., W. S. Broecker, and D. W. Spencer. 1981. GEOSECS, Pacific Expedition, Vol. 4, Sections and Profiles. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Ebensen, S. K. and Y. Kushmir. 1981. The heat budget of the global ocean: an atlas based on estimates from surface marine observations. Climate Research Institute Report No. 29, Oregon State University, Corvallis, Oregon.

    Google Scholar 

  • Fiadeiro, M. E. 1982. Three-dimensional modeling of tracers in the deep Pacific Ocean: I I. Radiocarbon and the circulation. J. Mar. Res.

    Google Scholar 

  • Fiadeiro, M. E. 1983. Physical-chemical processes in the open ocean. In B. Bolin and R. B. Cook, eds., The Major Biogeochemical Cycles and Their Interactions, pp. 461–476. John Wiley liuya Sons, Chichester and New York.

    Google Scholar 

  • Fiadeiro, M. E. and H. Craig. 1978. Three-dimensional modeling of tracers in the deep Pacific Ocean: I. Salinity and oxygen. J. Mar. Res. 36: 323–355.

    Google Scholar 

  • Fiadeiro, M. E. and G. Veronis. 1982. On the determination of absolute velocities in the ocean. J. Mar. Res. 40 (Suppl.): 159–182.

    Google Scholar 

  • Gordon, A. L. 1971. Oceanography at Antarctic waters. Antarctic Research Series 15, American Geophysical Union, pp. 169–203. National Academy of Sciences, Washington, DC.

    Google Scholar 

  • Hanson, R. J. and K. H. Haskell. 1982. Two algorithms for the linearly constrained least-squares problem. ACM-Trans. Math. Software 8 (3): 323–333.

    Article  Google Scholar 

  • Haskell, K. H., and R. J. Hanson. 1979. Selected algorithms for the linearly constrained least-squares problem-a user’s guide. Sand 78–1290. U.S. Department of Commerce, Springfield, Virginia.

    Google Scholar 

  • Haskell, K. H. and R. J. Hanson. 1981. An algorithm for linear least-squares problems with equality and nonnegativity constraints. Math. Programming 21 (1): 98–118.

    Article  Google Scholar 

  • Hoffert, M. I., T. Volk, and C. T. Hsieh. 1984. A two-dimensional ocean model for climate and tracer studies. Report prepared for Department of Energy, NYU/ DAS 83–114. New York University, New York.

    Google Scholar 

  • Keeling, C. D. 1973. The carbon dioxide cycle: Reservoir models to depict the exchange of atmospheric carbon dioxide with the oceans and land plants. In S. I. Rasool, ed., Chemistry of the Lower Atmosphere, pp. 251–329. Plenum Press, New York.

    Chapter  Google Scholar 

  • Killough, G. G. and W. R. Emanuel. 1981. A comparison of several models of carbon turnover in the ocean with respect to their distributions of transit time and age, and response to atmospheric CO2 and ‘4C. Tellus 33: 274–290.

    Article  CAS  Google Scholar 

  • Lawson, C. L. and R. J. Hanson. 1974. Solving Least-Squares Problems. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Levitus, S. 1982a. Climatological atlas of world ocean. National Oceanic and Atmospheric Administration Professional Paper 13: 83–1480.

    Google Scholar 

  • Washington, DC. Levitus, S. 1982b. Data tape on temperature salinity and oxygen available through Princeton University, Princeton, New Jersey.

    Google Scholar 

  • Spencer, D., W. S. Broecker, H. Craig, and R. F. Weiss. 1982. GEOSECS, Indian Ocean Expedition, Vol. 6, Sections and Profiles. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Stigebrand, A. 1981. A model for the thickness and salinity of the upper layer in the Arctic Ocean and the relationship between ice thickness and some external parameters. J. Phys. Oceanogr. 11: 1407–1422.

    Google Scholar 

  • Stuiver, M. 1978. Atmospheric carbon dioxide and carbon reservoir changes. Science 199: 253–258.

    Article  CAS  Google Scholar 

  • Stuiver, M., P. D. Quay, and H. G. Ostlund. 1983. Abyssal water carbon-14 distribution and the age of the world ocean. Science 219: 849–851.

    Article  CAS  Google Scholar 

  • Sverdrup, H. U., M. W. Johnson, and R. H. Fleming. 1942. Oceanography. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Veronis, G. 1975. The role of models in tracer studies. In Numerical Models of Ocean Circulation, pp. 133–145. Ocean Science Committee, National Academy of Sciences, Washington, DC.

    Google Scholar 

  • Wunsch, C. 1978. The general circulation of the North Atlantic west of 50°W determined from inverse methods. Rev. Geophys. Space Phys. 16: 583–620.

    Google Scholar 

  • Wunsch, C. 1980. Meridional heat flux of the North Atlantic Ocean. Proc. Natl. Acad. Sci. USA 77: 5043–5047.

    Google Scholar 

  • Wunsch, C. 1984. An eclectic model of the Atlantic circulation, 1, model-part I. The meridional flux of heat. J. Phys. Oceanogr. 14: 1712–1733.

    Google Scholar 

  • Wunsch, C. and B. Grant. 1982. Towards the general circulation of the North Atlantic Ocean. Prog. Oceanogr. 11: 1–59.

    Google Scholar 

  • Wunsch, C. and J. F. Minster. 1982. Methods for box models and ocean circulation tracers: mathematical programming and non-linear inverse theory. J. Geophys. Res. 87: 5647–5662.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moore, B., Björkström, A. (1986). Calibrating Ocean Models by the Constrained Inverse Method. In: Trabalka, J.R., Reichle, D.E. (eds) The Changing Carbon Cycle. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1915-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1915-4_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1917-8

  • Online ISBN: 978-1-4757-1915-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics