Advertisement

Changes in the Area of Forests in Rondonia, Amazon Basin, Measured by Satellite Imagery

  • George M. Woodwell
  • Richard A. Houghton
  • Thomas A. Stone
  • Archibald B. Park

Abstract

The transformation of tropical forests to pasture, crops, and barren land, now rapidly underway wherever tropical forests occur (Myers 1980; Fearnside 1982; Lanly 1982), contributes to the increase in CO2 in the atmosphere (Woodwell and Houghton 1977; Woodwell et al. 1978, 1983a,b; Houghton et al. 1983). The greatest promise in measurement of the rate of change in area of forests lies in use of satellite imagery, available since 1972 in the LANDSAT series with a resolution of about 80 m [NASA 1983, Woodwell et al. 1983a, Klemas and Hardisky 1983, Woodwell 19841. We have developed a special technique using LANDSAT imagery from different times to make direct measurements of changes in the area of forests. The technique was developed for Maine and tested in Washington (Woodwell et al. 1983a). We report here an application of the technique in the tropical moist forests of the state of Rondonia in the Brazilian Amazon (Fig. 13.1).

Keywords

Test Site Carbon Stock Amazon Basin LANDSAT Imagery Forest Clearing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, S. and A. E. Lugo. 1982. The storage and production of organic matter in tropical forests. Biotropica 14: 161–187.CrossRefGoogle Scholar
  2. Burns, G. S. 1983. Land cover change monitoring within the east central Louisiana study site-A case for large area surveys with LANDSAT multispectral scanner data. NASA Technical Report DC-Y3–04418, NSTL/ERL-221.Google Scholar
  3. Departamento Nacional Da Producao Mineral. 1978. Folha SC 20 Porto Velho. Projecto Radambrasil, Levantamento De Recursos Naturals, Vol. 16, Ministerio das Minas e Energia, DNPM, Rio De Janeiro.Google Scholar
  4. Fearnside, P. M. 1982. Deforestation in the Brazilian Amazon: how fast is it occurring? Interciencia 7 (2): 82–88.Google Scholar
  5. Fearnside, P. M. 1984. A Floresta Vai Acabar? Ciencia Hoje 2 (10): 42–52.Google Scholar
  6. Houghton, R. A., J. E. Hobble, J. M. Melillo, B. Moore, B. J. Peterson, G. R. Shaver, and G. M. Woodwell. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol. Monogr. 53: 235–262.CrossRefGoogle Scholar
  7. Klemas, V. and M. Hardisky. 1983. The use of remote sensing in global biosystem studies. Adv. Space Res. 3 (9): 115–122.CrossRefGoogle Scholar
  8. Lanly, J. 1982. Tropical forest resources. FAO Forestry Paper No. 30. Food and Agriculture Organization, Rome.Google Scholar
  9. Moore, B., R. D. Boone, J. E. Hobbie, R. A. Houghton, J. M. Melillo, B. J. Peterson, G. R. Shaver, C. J. Vorosmarty, and G. M. Woodwell. 1981. A simple model for analysis of the role of terrestrial ecosystems in the global carbon budget. In B. Bolin (ed.), Carbon Cycle Modelling. SCOPE 16, pp. 365–385. John Wiley and Sons, New York.Google Scholar
  10. Myers, N. 1980. Conversion of Tropical Moist Forests. National Research Council, Washington, DC.Google Scholar
  11. NASA. 1983. Land-related global habitability science issues, NASA Technical Memorandum 85841.Google Scholar
  12. Rambler, M. (ed.). 1983. Global biology research program, program plan, NASA Technical Memorandum 85629.Google Scholar
  13. Schlesinger, W. H. 1977. Carbon balance in the terrestrial detritus. Annu. Rev. Ecol. Syst. 8: 51–81.Google Scholar
  14. Tardin, A. T., D. C. L. Lee, R. J. R. Santos, O. R. deAssis, M. P. Barbosa, M. Moreira, M. T. Pereira, and C. P. Filho. 1980. Subprojecto Desmatamento Convenio IBDF/CNP-INPE. Instituto De Pesquisas Espaciais, Sao Jose dos Campos, Brazil.Google Scholar
  15. Tucker, C. J., B. N. Holben, and T. E. Goff. 1983. Forest clearing in Rondonia, Brazil as detected by NOAA7 AVHRR data. NASA Technical Memorandum 85018.Google Scholar
  16. Woodwell, G. M. (ed.). 1984. The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing. SCOPE 23. John Wiley and Sons, New York.Google Scholar
  17. Woodwell, G. M., J. E. Hobbie, R. A. Houghton, J. M. Melillo, B. Moore, A. B. Park, B. J. Peterson, G. R. Shaver, and T. A. Stone. 1983a. Deforestation measured by LANDSAT: steps toward a method. Technical report to the U. S. Department of Energy, TR005. Washington, DC.Google Scholar
  18. Woodwell, G. M., J. E. Hobbie, R. A. Houghton, J. M. Melillo, B. Moore, B. J. Peterson, and G. R. Shaver. 1983b. Global deforestation: contribution to atmospheric carbon dioxide. Science 222: 1081–1086.CrossRefGoogle Scholar
  19. Woodwell, G. M. and R. A. Houghton. 1977. Biotic influences on the world carbon budget. In W. Stumm (ed.), Global Chemical Cycles and Their Alterations by Man, pp. 61–72. Abakon Verlagsgesellschaft, Berlin.Google Scholar
  20. Woodwell, G. M., R. H. Whittaker, W. A. Reiners, G. E. Likens, C. C. Delwiche, D. B. Botkin. 1978. The biota and the world carbon budget. Science 199: 141–146.CrossRefGoogle Scholar
  21. World Bank. 1981. Brazil, Integrated Development of the Northwest Frontier, Latin America and the Caribbean Regional Office, The World Bank, Washington, DC.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • George M. Woodwell
  • Richard A. Houghton
  • Thomas A. Stone
  • Archibald B. Park

There are no affiliations available

Personalised recommendations