Continental and Global Scale Remote Sensing of Land Cover

  • Compton J. Tucker
  • J. R. G. Townshend
  • T. E. Goff
  • B. N. Holben


In recent years, a number of investigations have indicated that the sensors aboard meteorological satellites have potential for land-cover monitoring at regional, continental, and global scales. The outstanding characteristic of data from such satellites relates to their high temporal resolution; imagery is available for the whole globe on a near-daily basis. Thus the possibilities of obtaining cloud-free imagery are greatly enhanced, and the temporal dynamics of land cover can be observed. The Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration (NOAA) series of sun-synchronous, polar-orbiting, operational satellites has been identified as having particular potential in this context (Gray and McCrary 1981, Schneider et al. 1981, Townshend and Tucker 1981, Cicone and Metzler 1982, Ormsby 1982, Schneider and McGinnis 1982, Tucker et al. 1982). This is because the radiometer’s first band in the visible-red part of the spectrum and the second band in the near-infrared (Table 12.1) are two bands of particular use in vegetation mapping of green leaf area, green leaf biomass, or the intercepted photosynthetically active radiation (Tucker 1979, Curran 1980, Kumar and Monteith 1982). These bands correspond approximately to bands 5 and 7 of the Multispectral Scanner System (MSS) of the LAND-SAT series of satellites.


Land Cover Normalize Difference Vegetation Index Advanced Very High Resolution Radiometer Advanced Very High Resolution Radiometer Forest Clearing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aase, J. K. and F. H. Siddoway. 1980. Spring wheat yield estimates from spectral reflectance measurements. Agron. J. 72: 149–154.CrossRefGoogle Scholar
  2. Ajtay, G. L., P. Ketner, and P. Duvigneaud. 1979. Terrestrial primary production and phytomass. In B. Bolin et al. (eds.), The Global Carbon Cycle SCOPE 13, pp. 129–181. John Wiley, New York.Google Scholar
  3. Bartlett, D. S. and V. Klemas 1980. Quantitative assessment of tidal wetlands using remote sensing. Environ. Manag. 4: 337–345.CrossRefGoogle Scholar
  4. Bauer, M. C., J. E. Cipra, D. E. Anuta, and J. E. Etheridge. 1979. Identification and area estimates of agricultural crops by computer classification of LANDSAT multispectral scanner data. Remote Sensing Environ. 8: 77–92.CrossRefGoogle Scholar
  5. Brakke, T. W., E. T. Kanemasu, J. L. Steiner, F. T. Ulaby, and E. Wilson. 1981. Microwave radar response to canopy moisture, leaf-area index, and dry weight of wheat, corn, and sorghum. Remote Sensing Environ. 11: 207–220.CrossRefGoogle Scholar
  6. Cicone, R. C. and M. D. Metzler. 1982. Comparison of LANDSAT MSS, Nimbus 7 CZCS, and NOAA 6/7 AVHRR sensors for land use analysis. In Proceedings of the Fifth Symposium for Machine Processing of Remotely Sensed Data, pp. 291–297. Purdue University, Indiana.Google Scholar
  7. Curran, P. J. 1980. Multispectral remote sensing of vegetation amount. Prog. Phys. Geogr. 4: 315–341.CrossRefGoogle Scholar
  8. Curran, P. J. 1983. Multispectral remote sensing for the estimation of green leaf area index. Phil Trans. R. Soc. Lond. 309: 257–270.CrossRefGoogle Scholar
  9. Daughtry, C. S. T., M. E. Bauer, D. W. Crecelius, and M. M. Hirson. 1980. Effects of management practices in reflectance of spring wheat canopies. Agron. J. 27: 1055–1060.CrossRefGoogle Scholar
  10. Daughtry, C. S. T., K. P. Galio, and M. E. Bauer. 1983. Spectral estimates of solar radiation intercepted by corn canopies. Agron. J. 75: 527–531.CrossRefGoogle Scholar
  11. Dave, J. V. 1979. Extensive data sets of the diffuse radiation in realistic atmospheric models with aerosols and common absorbing gases. Solar Energy 21: 361–369.CrossRefGoogle Scholar
  12. de Laubenfels, D. J. 1975. Mapping the World’s Vegetation. Syracuse University Press.Google Scholar
  13. Duggin, M. J. 1977. Likely effects of solar elevation on the quantification of changes in vegetation with maturity using sequential LANDSAT imagery. Appl. Opt. 16: 521–523.CrossRefGoogle Scholar
  14. Eyre, S. R. 1963. Vegetation and soil, a world picture. Arnold, London.Google Scholar
  15. Fearnside, P. M. 1982. Deforestation in the Brazilian Amazon: how fast is it occurring? Interciencia 7: 82–88.Google Scholar
  16. General Electric Co. LANDSAT 3 Reference Manual. Valley Forge Space Center, General Electric, Philadelphia.Google Scholar
  17. Gray, T. I. and D. G. McCrary. 1981. Meteorological satellite data-a tool to describe the health of the world’s agriculture. AgRISTARS Report EW-N104042, NASA/JSC. Houston, Texas. 7 pp.Google Scholar
  18. Hatfield, T. L., G. Asrar, and E. T. Kanemasu. 1984. Intercepted photosynthetically active radiation in wheat canopies estimated by spectral reflectance. Remote Sens. Environ. 14: 65–76.CrossRefGoogle Scholar
  19. Holben, B. N. and R. S. Fraser. 1984. Red and near-infrared sensor response to off-nadir viewing. Int. J. Remote Sensing 5: 145–160.CrossRefGoogle Scholar
  20. Holben, B. N., C. J. Tucker, and C. J. Fan. 1980. Assessing soybean leaf area and leaf biomass with spectral data. Photogramm. Eng. Remote Sensing 46: 651–656.Google Scholar
  21. Jordan, C. F. 1969. Derivation of leaf area index from quality of light on the forest floor. Ecology 50: 663–666.CrossRefGoogle Scholar
  22. Keay, R. W. J. 1959. Vegetation Map of Africa. Clarendon Press, Oxford. Kidwell, K. A. 1979. NOAA Polar Orbiter Data Users Guide. Department of Commerce, Washington, D.C.Google Scholar
  23. Kimes, D. S. 1983. Dynamics of directional reflectance factor distributions for vegetation canopies. Appl. Opt. 22: 1364–1372.CrossRefGoogle Scholar
  24. Kimes, D. S., B. L. Markham, C. J. Tucker, and J. E. McMurtrey. 1981. Temporal relationships between spectral response and agronomic values of a corn canopy. Remote Sensing Environ. 11: 401–411.CrossRefGoogle Scholar
  25. Kirchner, J. A., D. S. Kimes, and J. E. McMurtrey. 1982. Variation of directional reflectance factors with structural changes of a developing alfalfa canopy. Appl. Opt. 21: 3766–3774.CrossRefGoogle Scholar
  26. Kreibel, K. T. 1978. Measured spectral bidirectional reflection properties of four vegetated surfaces. Appl. Opt. 17: 253–259.CrossRefGoogle Scholar
  27. Kumar, M. and J. L. Monteith. 1982. Remote sensing of plant growth. In H. Smith (ed.), Plants and the Daylight Spectrum, pp. 133–144. Academic, London.Google Scholar
  28. Matson, M. and J. Dozier. 1981. Identification of subresolution high temperature sources using a thermal IR sensor. Photogramm. Eng. Remote Sensing 47: 1311–1318.Google Scholar
  29. Muthoo, M. K. 1977. Perspective tendecias do setor florestal Brasideiro, 1975 a 2000. Institute Brasileiro de Desenvolvimento Florestal, Brasila.Google Scholar
  30. Myers, N. 1980. Conversion of tropical moist forests. National Academy of Sciences, Washington, D.C.Google Scholar
  31. Ormsby, J. P. 1982. Classification of simulated and actual NOAA-6 AVHRR data for hydrological land-surface feature definition. IEEE Trans. Geosci. Remote Sensing 20: 262–268.CrossRefGoogle Scholar
  32. Projecto Radan Brazil. 1978. Folha Sc. 20 Porta Velho. Ministerio das Minas e Energia. Departmento Nacional de Producao Mineral, Rio de Janeiro.Google Scholar
  33. Ranson, K. J., V. C. Vanderbilt, L. L. Biehl, B. F. Robinson, and M. E. Bauer. 1981. Soybean canopy reflectance as a function of view and illumination geometry. pp. 852–866. In Proceedings of the Fifteenth International Symposium for Remote Sensing Environment.Google Scholar
  34. Rouse, J. W., R. H. Haas, J. A. Schnell, and D. W. Deering. 1973. Monitoring vegetation systems in the great plains with ERT. In Third Symposium on Significant Results Obtained with ERTS-1, NASA SP-351, pp. 309–317. Washington, D.C.Google Scholar
  35. Schneider, S. R. and D. F. McGinnis. 1982. The NOAA/AVHRR: A new satellite sensor for monitoring crop growth. In Proceedings of the 1982 Machine Processing of Remotely Sensed Data, pp. 281–290. Purdue University, West Lafayette, Indiana.Google Scholar
  36. Schneider, S. R., D. F. McGinnis, and J. A. Gatlin. 1981. Use of NOAA AVHRR visible and near infrared data for land remote sensing. NOAA Tech. Report 84. U.S. Department of Commerce, Washington, D.C.Google Scholar
  37. Sioli, H. 1980. Foreseeable consequences of actual development schemes and alternate ideas. In F. Barbira-Scazzocchio (ed.), Land, People, and Planning in Contemporary Amazonia, pp. 257–268. Cambridge University, U.K.Google Scholar
  38. Slater, P. N. and R. D. Jackson. 1982. Atmospheric effect on radiation reflected from soil and vegetation as measured by orbiting sensors using various scanning directions. Appl. Opt. 21: 3923–3931.CrossRefGoogle Scholar
  39. Tardin, A. T., A. P. dos Santos, E.M.I. Morais Nov., and F. L. Toledo. 1978. Projectos agropecuarios de Amazonia; Desmatemento e fiscalizacaoraltorio. A Amazonia Brasil em foco 12: 7–45.Google Scholar
  40. Tardin, A. T., A. P. dos Santos et al. 1979. Levantamento de areas de desmatamento na Amazonia legal atrayes de imagens de satellite LANDSAT. INPECOM3/NTE, C. D. U. 621.38SR. San Jose dos Campos, Brazil.Google Scholar
  41. Tardin, A. T., A. P. dos Santos et al. 1980. Subprojecto sesmatamento, convenio. IBDF/CNP-INPE 1979, Relatoria IBDF-1 CNPq-INDE. San Jose dos Campos, Brazil.Google Scholar
  42. Tarpley, J. D., S. R. Schneider, and R. L. Money. 1984. Global vegetation indices from the NOAA-7 meteorology satellite. J. Climate Appl. Meteorol. 23: 491–494.CrossRefGoogle Scholar
  43. Townshend, J. R. G. and C. J. Tucker. 1981. Utility of AVHRR of NOAA 6 and 7 for vegetation mapping. In Matching Remote Sensing Technologies and Their Applications, pp. 97–109. Remote Sensing Society, London.Google Scholar
  44. Tucker, C. J. 1978. A comparison of satellite sensors for monitoring vegetation. Photogramm. Eng. Remote Sens. 44: 1369–1380.Google Scholar
  45. Tucker, C. J. 1979. Red and infrared linear combinations for monitoring vegetation. Remote Sensing Environ. 8: 127–150.CrossRefGoogle Scholar
  46. Tucker, C. J., I. Y. Fung, C. D. Keeling, and R. H. Gammon. 1986. A relationship is found between atmospheric CO, variations and a satellite-derived vegetation index. Nature 319 (in press).Google Scholar
  47. Tucker, C. J., J. R. G. Townshend, and T. E. Goff. 1985. African land cover classification using satellite data. Science 227: 369–374.CrossRefGoogle Scholar
  48. Tucker, C. J., J. A. Gatlin, S. R. Schneider, and M. A. Kuchinos. 1982. Monitoring large-scale vegetation dynamics in the Nile Delta and River Valley from NOAA AVHRR data. In Proceedings Conference on Remote Sensing of Arid and Semi-Arid Lands, pp. 973–987. Cairo, Egypt.Google Scholar
  49. Tucker, C. J., B. N. Holben, J. H. Elgin, and J. E. McMurtrey. 1981. Remote sensing of total dry matter accumulation in winter wheat. Remote Sensing Environ. 11: 171–189.CrossRefGoogle Scholar
  50. Tucker, C. J., B. N. Holben, and T. E. Goff. 1984. Intensive forest clearing in Rondonia, Brazil, as detected by satellite remote sensing. Remote Sensing Environ. 15: 255–261.CrossRefGoogle Scholar
  51. United Nations Education, Scientific, and Cultural Organization. 1968. Vegetation Map of the Mediterranean Region, Paris.Google Scholar
  52. Weinreb, M. P. and M. L. Hill. 1980. Calculation of atmospheric radiances and brightness temperatures in infrared window channels of satellite radiometers, NOAA Tech. Report NESS 80. Washington, D.C.Google Scholar
  53. White, F. 1983. The vegetation of Africa, UNESCO, Paris.Google Scholar
  54. Wiegand, C. L. and A. J. Richardson. 1984. Leaf area, light interception, and yield estimates from spectral components analysis. Agron. J. (in press).Google Scholar
  55. Wiegand, C. L., A. J. Richardson, and E. T. Kanemasu. 1979. Leaf area index estimates for wheat from LANDSAT and their implications for evapotranspiration and crop modeling. Agron. J. 71: 336–342.CrossRefGoogle Scholar
  56. Williams, D. L. and L. D. Miller. 1979. Monitoring forest canopy alteration around the world with digital analysis of LANDSAT imagery. NASA, Washington, D.C., 48 pp.Google Scholar
  57. World Atlas of Agriculture Committee. 1969. World Atlas of Agriculture, AgosteriNovare, Italy.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Compton J. Tucker
  • J. R. G. Townshend
  • T. E. Goff
  • B. N. Holben

There are no affiliations available

Personalised recommendations