Advertisement

Assays of Peptidoglycans and Specific Antibodies in Biological Samples

  • Jelka Tomašić
Part of the Methodological Surveys in Biochemistry and Analysis book series (MSBA, volume 16 A)

Abstract

The presence of bacterial peptidoglycan fragments in mammals is apparently due to enzymic action on cell walls, yielding peptidogly-cans (PG’s) differing in size and chemical composition. The fragments can be manifested in the host by immunomodulating activity and an influence on sleep regulation. Antibodies (Ab’s) can be raised to soluble fragments of higher mol. wt., and have been detected in serum from patients with bacterial infections, particularly staphylococcal. Several sensitive immunoassays are now available for detecting soluble PG’s or specific Ab’s, to distinguish patients with the most serious infections and to complement other diagnostic methods. Consideration is given to methods for isolating, purifying and characterizing PG’s of low mol. wt., including HPLC and fast atom bombardment mass spectrometry (FAB-MS).

Keywords

Fast Atom Bombardment Mass Spectrometry MURAMIC Acid Bacteriolytic Enzyme Synthetic Antigen Sleep Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schleifer, K.H. & Kandier, O. (1983) in The Target of Penicillin (Hackenbeck, R., Höltje, J-V. & Labischinkski, H., eds.), Walter de Gruyter, Berlin, pp. 11–17.Google Scholar
  2. 2.
    Strominger, J.L. & Ghuysen, J-M. (1967) Science156, 213–221.CrossRefGoogle Scholar
  3. 3.
    Selsted, M.E. & Martinez, R.J. (1978) Infect. Immun. 20, 782–791.Google Scholar
  4. 4.
    Calvo, P., Revilla, M.G. & Cabezas, J.A. (1978) Comp. Biochem. Physiol. 61B, 581–585.Google Scholar
  5. 5.
    Valinger, Z., Ladesic, B. & Tomasic, J. (1982) Biochim. Biophys. Acta. 701, 63–71.CrossRefGoogle Scholar
  6. 6.
    Schleifer, K.H. (1975) Z. Immun.-Forsch. 149, 104–117.Google Scholar
  7. 7.
    Chedid, L. & Lederer, E. (1978) Biochem. Pharmacol. 27, 2183–2186.CrossRefGoogle Scholar
  8. 8.
    Adam, A. & Lederer, E. (1984) Med. Res. Rev. 4, 111–152.CrossRefGoogle Scholar
  9. 9.
    Krueger, J.M., Karnovsky, M.L., Martin, S.A., Pappenheimer, J.R., Walter, J. & Biemann, K. (1984) J. Biol. Chem. 259, 12659–12662.Google Scholar
  10. 10.
    Fox, A., Schwab, J.H. & Cochran, T. (1980) Infect. Immun. 29, 526–531.Google Scholar
  11. 11.
    Whiton, R.S., Lau, P., Morgan, S.L., Gilbart, J. & Fox, A. (1985) J. Chromatog.347, 109–120.CrossRefGoogle Scholar
  12. 12.
    Mimura, T. & Romano, J-C. (1985) Appl. Environ. Microbiol.50, 229–237.Google Scholar
  13. 13.
    Lindroth, P. & Mopper, K. (1979) Anal. Chem.51, 1338–1345.CrossRefGoogle Scholar
  14. 14.
    Mimura, T. & Delmas, D. (1983) J. Chromatog.280, 91–98.CrossRefGoogle Scholar
  15. 15.
    Sen, Z. & Karnovsky, M.L. (1984) Infect. Immun.43, 937–941.Google Scholar
  16. 16.
    Petit, J.F., Wietzewrbin, J., Das, B.C. & Lederer, E. (1975) Z. Immun.-Forsch.149, 118–125.Google Scholar
  17. 17.
    Glauner, B. & Schwartz, U. (1983) as. for 1, pp. 29–34.Google Scholar
  18. 18.
    Markiewicz, Z., Glauner, B. & Schwartz, U. (1983) J. Bacterid.156, 649–655.Google Scholar
  19. 19.
    Dougherty, T.J. (1985) J. Bacteriol.163, 69–74.Google Scholar
  20. 20.
    Yapo, A., Petit, J.F., Lederer, E., Parant, M., Parant, F. & Chedie, L. (1982) Int. J. Immunopharmacol.4, 143–149.CrossRefGoogle Scholar
  21. 21.
    Ambler, L. & Hudson, A.M. (1984) Int. J. Immunopharmacol.6, 133–139.CrossRefGoogle Scholar
  22. 22.
    Krueger, J.M., Pappenheimer, J.R. & Karnovsky, J.L. (1978) Proc. Nat. Acad. Sci. 75, 5235–5238, &CrossRefGoogle Scholar
  23. 22a.
    Krueger, J.M., Pappenheimer, J.R. & Karnovsky, J.L.(1982) J. Biol. Chem.257, 1664–1669.Google Scholar
  24. 23.
    Martin, S.A., Karnovsky, M.L., Krueger, J., Pappenheimer, J.R. & Biemann, K. (1984) J. Biol. Chem. 259, 12652–12658.Google Scholar
  25. 24.
    Keglevic, D., Ladesic, B., Tomasic, J., Valinger, Z. & Naumski, R. (1979) Biochim. Biophys. Acta.585, 273–281.CrossRefGoogle Scholar
  26. 25.
    Park, H., Zeiger, A.R. & Schumacher, R. (1984) Infect. Immun.43, 139–142.Google Scholar
  27. 26.
    Harris, C.M., Kopecka, H. & Harris, T.M. (1985) J. Antibiotics.38, 51–57.CrossRefGoogle Scholar
  28. 27.
    DePedro, M.A. & Schwartz, U. (1980) FEMS Microbiol. Lett.9, 215–217.CrossRefGoogle Scholar
  29. 28.
    Seidl, P.H., Franken, N. & Schleifer, K.H. (1983) as for 1., pp. 299–304.Google Scholar
  30. 29.
    Heymer, B., Bernstein, D., Schleifer, K.H. & Krause, R. (1975) J. Immun.114, 1191–1196.Google Scholar
  31. 30.
    Bolton, A.E. & Hunter, W.M. (1973) Biochem. J.133, 529–539.Google Scholar
  32. 31.
    Zeiger, A.R., Tuazon, C.U. & Sheagren, J.N. (1981) Infect. Immun.33, 795–800.Google Scholar
  33. 32.
    Christensson, B., Espersen, F., Hedström, S.A. & Kronvall, G. (1983) Acta Path. Microbiol. Immunol. Scand.91B, 401–406.Google Scholar
  34. 33.
    Wheat, L.J., Wilkinson, B.J., Kohler, R.B. & White, A.C. (1983) J. Infect. Dis.147, 16–22.CrossRefGoogle Scholar
  35. 34.
    Christensson, B., Espersen, F., Hedström, S.A. & Kronvall, G. (1984) J. Clin. Microbiol.19, 680–686.Google Scholar
  36. 35.
    Franken, N., Seidl, P.H., Kuchenbauer, T., Kolb, H.J., Schleifer, K.H., Weiss, L. & Tympner, K-D. (1984) Infect. Immun.44, 182–187.Google Scholar
  37. 36.
    Park, H., Schumacher, H.R., Zeiger, A.R. & Rosenbaum, J.T. (1984) Ann. Rheum. Dis.43, 725–728.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Jelka Tomašić
    • 1
  1. 1.Institute of ImmunologyZagrebYugoslavia

Personalised recommendations