Advertisement

A Comparison of Tokamak Burn Cycle Options

  • David A. Ehst
  • J. N. Brooks
  • Y. Cha
  • K. EvansJr.
  • A. M. Hassanein
  • S. Kim
  • S. Majumdar
  • B. Misra
  • H. C. Stevens
Part of the Ettore Majorana International Science Series book series (EMISS)

Abstract

Experimental confirmation of noninductive current drive has spawned a number of suggestions as to how this technique can be used to extend the fusion burn period and improve the reactor prospects of tokamaks. Several distinct burn cycles, which employ various combinations of Ohmic and noninductive current generation, are possible, and we will study their relative costs and benefits for both a commercial reactor as well as an INTOR-class device. We begin with a review of the burn cycle options.

Keywords

Thermal Fatigue Current Drive Hybrid Mode Thermal Storage Continuous Wave Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. C. Baker et al., “STARFIRE - A Commercial Tokamak Power Plant Study,” Argonne National Laboratory Report, ANL/FPP/80–1 (1980).Google Scholar
  2. 2.
    D. A. Ehst et al., J. Fusion Energy 2 (1982) 83.CrossRefGoogle Scholar
  3. 3.
    M. Porkolab et al., “Lower Hybrid Current Drive and Heating Experiments at the 1-MW RF Power Level on Alcator C,” 11th European Conference on Controlled Fusion and Plasma Physics, Aachen, West Germany, 1983.Google Scholar
  4. 4.
    R. Motley et al., in Proc. of IAEA Technical Committee Meeting, Culham, England, CLM-CD (1983), Vol. ii (1983), 299.Google Scholar
  5. 5.
    N. J. Fisch, “Operating Tokamaks with Steady-State Toroidal Current,” Princeton Plasma Physics Laboratory Report, PPPL-1772 (1981).Google Scholar
  6. 6.
    N. J. Fisch, in Proc. 3rd Joint Varenna-Grenoble International Symposium on Heating in Toroidal Plasmas, EUR7979EN, Vol. iii (1982) 841.Google Scholar
  7. 7.
    C. E. Singer and D. R. Mikkelsen, J. Fusion Energy 3 (1983) 13.CrossRefGoogle Scholar
  8. 8.
    R. A. Bolton et al., in Proc. 3rd Top. Mtg. on Technology of Controlled Nuclear Fusion, CONF-780508, Vol. ii (1978) 824.Google Scholar
  9. 9.
    M. A. Abdou et al., “A Demonstration Tokamak Power Plant Study (DEMO),” Argonne National Laboratory Report, ANL/FPP-82–1 (1982).Google Scholar
  10. 10.
    D. A. Ehst et al., “Tokamak Burn Cycle Study,” Argonne National Laboratory Report, ANL/FPP/TM-178 (1983).Google Scholar
  11. 11.
    D. A. Ehst et al., “A Comparison of Pulsed and Steady State Tokamak Reactor Burn Cycles-Part I: Thermal Effects and Lifetime Limitations,” Nucl. Eng. and Design/Fusion (to be published, Vol. 2, Issue No. 4, 1985 ).Google Scholar
  12. 12.
    D. A. Ehst et al., “A Comparison of Pulsed and Steady State Tokamak Reactor Burn Cycles-Part II: Magnet Fatigue, Power Supplies and Cost Analysis,” Nucl. Eng. and Design/Fusion (to be published, Vol. 2, Issue No. 4, 1985 ).Google Scholar
  13. 13.
    D. A. Ehst, J. Fusion Energy 1 (1981) 357.CrossRefGoogle Scholar
  14. 14.
    W. M. Stacey, Jr. et al., USA FED-INTOR/82–1 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • David A. Ehst
    • 1
  • J. N. Brooks
    • 1
  • Y. Cha
    • 1
  • K. EvansJr.
    • 1
  • A. M. Hassanein
    • 1
  • S. Kim
    • 1
  • S. Majumdar
    • 1
  • B. Misra
    • 1
  • H. C. Stevens
    • 1
  1. 1.Fusion Power ProgramArgonne National LaboratoryArgonneUSA

Personalised recommendations