• Winfried Scharlau
  • Hans Opolka
Part of the Undergraduate Texts in Mathematics book series (UTM)


Carl Friedrich Gauss lived from 1777 to 1855. In his lifetime he was known as “princeps mathematicorum.” His main number-theoretical work, Disquisitiones Arithmeticae, and several smaller number-theoretical papers contain so many deep and technical results that we have to confine ourselves to just a small sample. Other equally important results will not be mentioned.


Prime Element Quadratic Field Principal Ideal Domain Equivalent Module Binary Quadratic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. C. F. Gauss: Werke,specifically Vols. I and II (for translations see bibliography).Google Scholar
  2. C. F. Gauss: Briefwechsel mit Bessel, Gerling, Olbers, Schumacher. Reprints of the original editions, Georg Olms Verlag, Hildesheim, New York, 1976.Google Scholar
  3. C. F. Gauss: Mathematisches Tagebuch 1796–1814, Oswalds Klassiker der exakten Wissenschaften 256, Akad. Verlagsges., Leipzig, 1976.Google Scholar
  4. P. Bachmann: Über Gauss’ zahlentheoretische Arbeiten in Materialien für eine wissenschaftliche Biographie von Gauß. Gesammelt von F. Klein und M. Brendel, Teubner, Leipzig, 1911.Google Scholar
  5. G. J. Rieger: Die Zahlentheorie bei C. F. Gauss, in C. F. Gauss Leben und Werk. H. Reichardt (ed.), Haude u. Spener, Berlin, 1960.Google Scholar
  6. T. Hall: Carl Friedrich Gauss, MIT Press, Cambridge and London, 1970.MATHGoogle Scholar
  7. H. Wussing: Carl Friedrich Gauss, Teubner, Leipzig, 1974.MATHGoogle Scholar
  8. K. Reich: Carl Friedrich Gauss 1777/1977, Heinz Moos Verlag, Munich, 1977.Google Scholar
  9. K. O. May: Gauss, in Dictionary of Scientific Biography.Google Scholar
  10. W. K. Bühler: Gauss (1777–1855), A Biographical Study. Springer-Verlag, Berlin, Heidelberg, New York, 1981.Google Scholar
  11. O. Neumann: Bemerkungen aus heutiger Sicht über Gauss’ Beiträge zur Zahlentheorie, Algebra und Funktionentheorie, Geschichte NTM 16, 2, (1979), 22–39.MATHGoogle Scholar
  12. Z. I. Borevich and I. R. Shafarevich: Number Theory. Transl. by N. Greenleaf, Academic Press, New York, 1966.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Winfried Scharlau
    • 1
  • Hans Opolka
    • 1
  1. 1.Mathematisches InstitutUniversität MünsterMünsterWest Germany

Personalised recommendations