New Methods for the Analysis of Insulin Kinetics in Vivo: Insulin Secretion, Degradation, Systemic Dynamics and Hepatic Extraction

  • J. Radziuk
  • T. Morishima
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 189)


Glucose is a metabolite which is subject to a high degree of control. It is a principal substrate for the metabolic activity of the central nervous system, but its availability from exogenous sources is sporadic. This has led to the development of hormone systems which titrate the distribution of energy-rich substrates among different tissues in a very precise manner. That these hormone systems are efficient is manifest in the minimal perturbations seen, for example, in plasma glucose concentrations after the ingestion of a carbohydrate containing meal.


Insulin Secretion Hepatic Extraction Insulin Clearance Metabolic Clearance Rate Insulin Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.H. Kipnis, Insulin secretion in diabetes mellitus, Ann. Intern. Med. 69: 891–901 (1969).CrossRefGoogle Scholar
  2. 2.
    J.M. Olefsky, G.H. Reaven, Insulin binding in diabetes: relationships with plasma insulin levels and insulin sensitivity, Diabetes 26: 680–688 (1977).PubMedGoogle Scholar
  3. 3.
    C.R. Kahn, Role of insulin receptors in insulin-resistant states, Metabolism 29: 455–466 (1980)PubMedCrossRefGoogle Scholar
  4. 4.
    H. Beck-Nielsen, The pathogenetic role of an insulin-receptor defect in diabetes mellitus of the obese, Diabetes 27: 1175–1181 (1978).PubMedGoogle Scholar
  5. 5.
    O.G. Kolterman, R.S. Gray, J. Griffin, P. Burstein, J. Insel, J.A. Scarlett, and J.M. Olefsky, Receptor and post-receptor defects contribute to the insulin resistance in non-insulin dependent diabetes mellitus, J. Clin. Invest. 68: 957–969 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    O. Faber, K. Christensen, H. Kehlet, S. Madsbad, and C. Binder, Decreased insulin removal contributes to hyperinsulinemia in obesity, J. Clin. Endocrinol Metab. 53: 618–621 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    I. Mandelbaum, C.R. Morgan, Pancreatic blood flow and its relationship to insulin during extracorporeal circulation, Am. J. Surg. 170: 755–758 (1969).Google Scholar
  8. 8.
    Y. Kanazawa, T. Kuzuya, T. Ide, Insul in output via the pancreatic vein and plasma insulin response to glucose in dogs, Am. J. Physiol. 215: 620–626 (1968).PubMedGoogle Scholar
  9. 9.
    A.M. Rappaport, J.K. Davidson, T. Kawamura, B.J. Lin, S. Zelin, J. Henderson, and R.E. Haist, Quantitative determination of insulin output following an intravenous glucose tolerance test in the dog, Can. J. Physiol. Pharm. 46: 373–381 (1968).CrossRefGoogle Scholar
  10. 10.
    J.B. Field, Insulin extraction by the liver, in: “Endocrinology,” vol. 1, Endocrine Pancreas, R.O Grey, E. B. Astwood, eds., Am Physiol Society, Washington, 505(1972).Google Scholar
  11. 11.
    L.L. Madison, and N. Kaplan, The hepatic binding of 1131 labeled insulin in human subjects during a simple transhepatic circulation, J. Lab. Clin. Med. 52: 927–932 (1958).Google Scholar
  12. 12.
    J.B. Field, Extraction of insulin by the liver, Ann. Rev. Med. 309–314 (1973).Google Scholar
  13. 13.
    C.E. Mondon, J.M. Olefsky, C.B. Doldas, and G.H. Reaven, Removal of insulin by perfused rat liver: effect of concentrations, Metal Clin. Exp. 51: 912–921 (1975).Google Scholar
  14. 14.
    A.N. Rubenstein, A.H. Pottenger, M.E. Maki:), G.S. Getz, and D.F. Steiner, The metabolism of proinsulin and insulin by the liver, J. Clin. Invest. 51: 912–921 (1972).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Ooms, Y. Arnould, U. Rosa, G.F. Pennisi, and J.R.M. Franckson, Clearances metaboliques globales de l’insuline cristalline et d’insulines substituees au radioiode, Path Biol. 16: 241–245 (1968).Google Scholar
  16. 16.
    P.H. Sonksen, C.V. Tompkin, C. Srivastava, and J.D.N. Nabarro, A comparative study on the metabolism of human insulin and porcine proinsulin in man, Clin. Sci. Mol. Med. 45: 633–654 (1973).Google Scholar
  17. 17.
    J.R.M. Franckson, and H.A. Ooms, The catabolism of insulin in the dog: evidence for the existence of two pathways, Postgrad. Med. J. 49: 931–939 (1973).PubMedGoogle Scholar
  18. 18.
    M. Kaden, P. Harding, and J.B. Field, Effect of intraduodenal glucose adminsitration on hepatic extraction of insulin in the anaesthetized dog, J. Clin. Invest. 52: 2016–2028 (1973).PubMedCrossRefGoogle Scholar
  19. 19.
    P.S. Harding, G. Bloom, and J.B. Field, Effect of infusion of insulin into portal vein on hepatic extraction of insulin in anaesthetized dogs, Am. J. Physiol. 228: 1580–1588 (1975).PubMedGoogle Scholar
  20. 20.
    J. Jaspan, and K. Polonsky, Glucose ingestion in dogs alters the hepatic extraction of insulin: in vivo evidence for a relationship between biologic action and extraction of insulin, J. Clin. Invest. 69: 516–525 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    W. Waldhausl, P. Bratusch-Marrain, S. Gasic, A. Korn, and P. Nowotny, Insulin production rate, hepatic insulin retention and splanchnic carbohydrate metabolism after oral glucose ingestion in hyperinsulinemia Type 2 (non-insulin-dependent) diabetes mellitus, Diabetologia 23: 6–15 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Ishida, Z. Chap, J. Chou, R. Lewis, C. Hartley, M. Entman, and J.B. Field, Differential effects of oral, peripheral intravenous, and intraportal glucose on hepatic glucose uptake and insulin and glucose extraction in conscious dogs, J. Clin. Invest. 72: 590–601 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    K. Polonsky, J. Jaspan, D. Emmanuouel, K. Holmes, and A.R. Moossa, Differences in hepatic and renal extraction of insulin and glucagon in the dog; evidence of saturability of insulin metabolism, Acta Endocrinol 102: 420–427 (1983).PubMedGoogle Scholar
  24. 24.
    A.N. Rubenstein, J.L. Clark, F. Melani, and D.F. Steiner, Secretion of proinsulin C-peptide by pancreatic beta cells and its circulation in blood, Nature 224: 697–699 (1969).CrossRefGoogle Scholar
  25. 25.
    D.L. Horwitz, J.I. Starr, H.E. Mako, W.G. Blackard, and A.H. Rubenstein, Proinsulin, insulin, C-peptide concentrations in human portal and peripheral blood, J. Clin. Invest. 55: 1278–1283 (1975).PubMedCrossRefGoogle Scholar
  26. 26.
    K. Polonsky, J.B. Jaspan, W. Pugh, D. Cohen, M. A. Schneider, T. Schwartz, A.R. Moossa, H. Tager, and A.H. Rubenstein, Metabolism of C-peptide in the dog: in vivo demonstration of the absence of hepatic extraction, J. Clin. Invest. 72: 1114–1123 (1983)PubMedCrossRefGoogle Scholar
  27. 27.
    R.W. Stoll, J.L. Touber, L.A. Menahan, R.H. Williams, Clearance of porcine insulin, proinsulin and connecting peptide by the isolated rat liver, Proc. Soc. Exp. Biol. Med. 133: 894–896 (1970).CrossRefGoogle Scholar
  28. 28.
    C. Kulh, O.K. Faber, P. Hornes, and S.L. Jensen, C-peptide metabolism and the liver, Diabetes 27: 197–200 (1978).Google Scholar
  29. 29.
    D.L. Horwitz, H. Kuzuya, and A.H. Rubenstein, Circulating serum C-peptide. A brief review of diagnostic implications, New Engl. J. Med. 295: 207–209 (1976).PubMedCrossRefGoogle Scholar
  30. 30.
    L.H. Heding, Insulin, C-peptide and proinsulin in nondiabetics and insulin treated diabetics. Characterization of the pro- insulin in insulin-treated diabetics, Diabetes 27, Suppl. 1: 178–183 (1978).Google Scholar
  31. 31.
    K.S. Polonsky, and A.H. Rubenstein, C-peptide as a measure of the secretion and hepatic extraction of insulin. Pitfalls and limitations. Diabetes 33: 486–494 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    W. Waldausl, P. Bratusch-Marrain, S. Gasic, A. Korn, and P. Nowotry, Insulin production rate following glucose ingestion estimated by splanchnic C-peptide output in normal man, Diabetologia 17: 221–227 (1979).CrossRefGoogle Scholar
  33. 33.
    P.R. Bratusch-Marrain, N.K. Waldhausl, S. Gasic, A. Hofer, Hepatic disposal of biosynthetic human insulin and porcine C-peptide in humans, Metabolism 33: 151–157 (1984).PubMedCrossRefGoogle Scholar
  34. 34.
    O.K. Faber, C. Hagen, C. Binder, J. Markussen, V.K. Naithani, P.M. Blix, H. Kuzuya, D.L. Horwitz, A.H. Rubenstein, and N. Rossing, Kinetics of human connecting peptide in normal and diabetic subjects, J. Clin. Invest. 62: 197–203 (1978).PubMedCrossRefGoogle Scholar
  35. 35.
    R.P. Eaton, R.C. Allen, D.S. Schade, K.H. Erickson, and J. Standefer, Prehepatic insulin production in man; kinetic analysis using peripheral connecting peptide behaviour, J. Clin. Endoc. Metab. 51: 520–528 (1980).CrossRefGoogle Scholar
  36. 36.
    J. Radziuk, The numerical solution from measurement data of linear integral equations of the first kind, Int. J. Num. Meth. Engng. 11: 729–735 (1977).CrossRefGoogle Scholar
  37. 37.
    T. Morishima, K. Polonsky, H. Tager, and J. Radziuk, The measurement and validation of nonsteady C-peptide secretion rate in dogs, Diabetologia (1985).Google Scholar
  38. 38.
    T. Kuzuya, and A. Matsuda, Disappearance rate of endogenous human C-peptide from blood, Diabetolgia 12: 519–521 (1976).CrossRefGoogle Scholar
  39. 39.
    O.K. Faber, S. Hadsbad, H. Kehlet, and C. Binder, Pancreatic beta cell secretion during oral and intravenous glucose administration, Acta. Medica. Scand. Suppl. 624: 61–64 (1979).Google Scholar
  40. 40.
    M.T. Meistas, M. Rendell, S. Margolis, and A.A. Kowarski, Estimation of the secretion rate of insulin from the urinary excretion rate of C-peptide: study in obese and diabetic subjects, Diabetes 31: 449–453 (1982).PubMedCrossRefGoogle Scholar
  41. 41.
    C.W. Sheppard, “Basic principles of the tracer method,” John Wiley and Sons, Inc., New York (1962).Google Scholar
  42. 42.
    J. Radziuk, An integral equation approach to meaning turnover in nonsteady compartmental and distributed systems, Bull. Math. Biol. 38: 679–693 (1976).PubMedGoogle Scholar
  43. 43.
    S.H. Genuth, Metabolic clearance of insulin in man, Diabetes 21: 1003–10102 (1972).PubMedGoogle Scholar
  44. 44.
    M.P. Stern, J.W. Farquhar, A. Silvers, and G.M. Reaven, Insulin delivery rate into plasma in normal and diabetic subjects, J. Clin Invest. 47: 1947–1957 (1968).PubMedCrossRefGoogle Scholar
  45. 45.
    S.W.D. Shen, G.W. Reaven, J.W. Farquhar, Comparison of impedance to insulin-mediated glucose uptake in normal subjects and in subjects with latent diabetes, J. Clin. Invest. 49: 2151–2160 (1970).PubMedCrossRefGoogle Scholar
  46. 46.
    J.L. Izzo, A. Roncone, H.J. Izzo, and W.F. Bale, Relationship between degree of iodination of insulin and its biological, electrophorectic and immunochemical properties, J. Biol. Chem. 239: 3749–3754 (1964).PubMedGoogle Scholar
  47. 47.
    H.A. Ooms, Y. Arnould, U. Rosa, G.F. Pennisi, J.R.H. Franckson, Clearance metabolique globale de l’insuline cristalline et d’insulines substitutees au radioiode, Path. Biol. 16: 241–245 (1968).Google Scholar
  48. 48.
    E.R. Arquilla, H. Ooms, and K. Mercola, Immunological and biological properties of iodoinsulin labelled with one or less atoms of iodine per molecule, J. Clin. Invest. 47: 474–487 (1968).PubMedCrossRefGoogle Scholar
  49. 49.
    R.H. Jones, D.I. Doon, M.J. Ellis, Sonksen, and D. Brandenberg, Biological properties of chemically modifed insulin, 1. Biological activity of proinsulin and insulin modified at A1-glycine and B29-lysine. Diabetologia 12: 601–608 (1976).PubMedCrossRefGoogle Scholar
  50. 50.
    T. Blundell, G.G. Dodson, D. Hodgkin, and D. Mercola, Insulin: the structure in the crystal and its reflection in chemistry and biology, Adv. Protein Chem. 26: 279–402 (1972).CrossRefGoogle Scholar
  51. 51.
    R. Geiger, and D. Langner, Insulin-Analoga mit N-terminal verkurzter B-Kette, Selektiner Edmann-Abbau an der B-Kette des Insulins, Hoppe Selyer’s Z, Physiol Chem. 354: 1285–1290 (1973).CrossRefGoogle Scholar
  52. 52.
    M.J. Ellis, R.H. Jones, J.H. Thomas, R. Geizer, V. Teetz, and P.H. Sonksen, B1–3, 5-diiodotyrosine insulin: a valid tracer for insulin, Diabetologia 13: 257–261 (1977).PubMedCrossRefGoogle Scholar
  53. 53.
    J.L. Hamlin, E.R. Arquilla, Monoiodoinsulin, preparation, purification and characterization of a biologically active derivative substituted predominantly on tyrosine A14, J. Biol. Chem. 249: 21–32 (1974).PubMedGoogle Scholar
  54. 54.
    S. Linde, B. Hansen, O. Sonne, J.J. Holst, and J. Gliemann, Tyrosine A14(1251] monoiodoinsulin. Preparation, biologic properties and long term stability, Diabetes 30: 1–8 (1981).PubMedCrossRefGoogle Scholar
  55. 55.
    R. Navalesi, A. Pilo, and E. Ferranini, Kinetic analysis of plasma insulin disappearance in nonketotic diabetic patients and in normal subjects. A tracer study with 125I-insulin, J. Clin. Invest. 61: 197–208 (1978).PubMedCrossRefGoogle Scholar
  56. 56.
    P. Halban, R.E. Offord, The preparation of a semisynthetic tritiated insulin with a specific radioactivity of up to 2 Curies per millimole, Biochem. J. 151: 219–225 (1975).PubMedGoogle Scholar
  57. 57.
    P.A. Halban, C. Karakash, J.G. Davies, and R.E. Offord, The degradation of semisynthetic tritiated insulin by perfused mouse livers, Biochem J. 160: 409–412 (1976).PubMedGoogle Scholar
  58. 58.
    R. Navalesi, A. Pilo, and E. Ferrannini, Kinetic analysis of plasma insulin disappearance in nonketotic diabetic patients and in normal subjects, J. Clin. Invest. 61: 197–208 (1978).PubMedCrossRefGoogle Scholar
  59. 59.
    T. Morishima, C. Bradshaw, and J. Radziuk, Measurement and validation of steady state turnover of insulin using tritiated insulin as tracer in dogs-relationship of insulin clearance to concentration, Am. J. Physiol. (in press).Google Scholar
  60. 60.
    S. Terris, and D.F. Steiner, Binding and degradation of 1251-insulin by rat hepatocytes, J. Biol. Chem. 250: 83–89 (1975).Google Scholar
  61. 61.
    J. Gliemann, and V. Sonne, Binding and receptor-mediated degradation of insulin in adipocytes, J. Biol. Chem. 253: 7857 (1978).PubMedGoogle Scholar
  62. 62.
    M. Berger, P.A. Halban, W.A. Muller, R.E. Offord, A.E. Renold, M. Vranic, Mobilization of subcutaneously injected tritiated insulin in rats: effects of muscular excercise, Diabetologia 15: 133–140 (1978).PubMedCrossRefGoogle Scholar
  63. 63.
    W.C. Duckworth, Insulin degradation of liver cell membranes, Endocrinology 140: 1758 (1979).CrossRefGoogle Scholar
  64. 64.
    B.I. Posner, B. Patel, A.K. Verma and J.J.M. Bergeron, Uptake of insulin by plasmalemma and Golgi subcellular fractions of rat liver, J. Biol. Chem. 255: 735 (1980).PubMedGoogle Scholar
  65. 65.
    C.R. Kahn, and K. Baird, The fate of insulin bound to adipocytes. Evidence for compartmentalization and processing, J. Biol. Chem 253: 4900 (1978).PubMedGoogle Scholar
  66. 66.
    T.R.I. Misbin, J.G. Davies, R.E. Offord, P.A. Halban, and R.D. Mehl, Binding and degradation of semisynthetic tritiated insulin by IM-9 cultured human lymphocytes, Diabetes 29: 730 (1980).PubMedCrossRefGoogle Scholar
  67. 67.
    U. Damgaard, and J. Markussen, Analysis of insulins and related compounds by HPLC, Horm. Metab. Res. 11: 580–581 (1979).PubMedCrossRefGoogle Scholar
  68. 68.
    A. Dinner, and L. Lorenz, High perforamance liquid chromatographic determination of bovine insulin, Anal. Chem. 51: 1872–1873 (1979).CrossRefGoogle Scholar
  69. 69.
    F.B. Stentz, H.L. Harris, A.E. Kitabchi, Early detection of degraded 125I-insulin in human fibroblasts by the use of high performance liquid chromatography, Diabetes 32: 474–477 (1983).PubMedCrossRefGoogle Scholar
  70. 70.
    H.P.J. Bennett, C.A. Browne, P.I. Brubaker, and S. Solomon, A comprehensive approach to the isolation and purification of peptide hormones using only reverse-phase liquid chromatography, in: “Biological/Biomedical Applications of Liquid Chromatography III,” G.L. Hawk, ed., Marcel Dekker, Inc., New York and Basel p. 197–209 (1981).Google Scholar
  71. 71.
    J. Radziuk, T. Morishima, H.P.J. Bennett, P.A. Halban, and R.E. Offord, The presence of partially-degraded insulin in plasma of dogs. A method of measuring the plasma concentrations of tritiated insulin, Metabolism (in press).Google Scholar
  72. 72.
    J. Radziuk, and G. Hetenyi, Jr., Modelling and the use of tracers in the analysis and exogenous control of glucose homeostasis, in: “Modelling in Metabolism with Clinical Applications,” D. Cramp, ed., J. Wiley and Sons, London, 1981, p.p. 73–142.Google Scholar
  73. 73.
    K.G. Tranberg, and H. Dencker, Modelling of fractional disappearance of unlabelled insulin in man, Am. J. Physiol. 235: E577–E585 (1978).PubMedGoogle Scholar
  74. 74.
    P.A. Insel, J.E. Liljenquist, J.D. Tobin, R.S. Sherwin, P. Watkins, R. Andres, and M. Berman, Insulin control of glucose metabolism in man. A new kinetic analysis, J. Clin. Invest. 55: 1057–1066 (1975).PubMedCrossRefGoogle Scholar
  75. 75.
    E.A. McGuire, J.D. Tobin, M. Berman, and T.R. Andres, Kinetic of native insulin in diabetic, obese and aged man, Diabetes 28: 110–120 (1979).PubMedCrossRefGoogle Scholar
  76. 76.
    M. Berman, R.A. McGuire, J. Roth, and A.H.J. Zeleznik, Kinetic modelling of insulin binding to receptors and degradation in vivo in the rabbit, Diabetes 29: 50–59 (1980).PubMedGoogle Scholar
  77. 77.
    K.G. Tranberg, Hepatic uptake of insulin in man, Am. J. Physiol. 237: E509–E518 (1979).PubMedGoogle Scholar
  78. 78.
    C. Cobelli, G. Felderspil, G. Pacini, W.A. Salvan, and C. Scandellari, Modelling and stimulation of the blood glucose regulation system, in: “Stimulation of Systems,” L. Dekker, G. Savastano and G.C. Vansteenkisto, eds., North Holland, Amsterdam, pp. 675–687 (1979).Google Scholar
  79. 79.
    P.H. Sonksen, K.N. Jones, C.V. Tompkins, M.C. Srivastara, and J.D.N. Nabarro, The metabolism of insulin in vivo. Excerpta Medica. Int. Congress Series #413, 204–213 (1976)Google Scholar
  80. 80.
    C.S. Cockram, S. Bahrami, M.A. Bordujerdi, R.N. Jones, and D. Brandenburg, Bl-monoiodoninsulin: a comparison with other tracers, Diabetologia 21: 260 (1981).Google Scholar
  81. 81.
    R. Navalesi, A. Pilo, and E. Ferrannini, Insulin kinetics after portal and peripheral injection of 125I insulin. II experi- ments in the intact dog, Am. J. Physiol. 230: 1630–1636 (1976).PubMedGoogle Scholar
  82. 82.
    R.S. Sherwin, K.J. Kramer, J.F.D. Tobin, P.A. Insel, J.E. Liljenquist, M. Berman and R. Andres, A model of the kinetics of insulin in man, J. Clin. Invest. 53: 1481–1492 (1974).PubMedCrossRefGoogle Scholar
  83. 83.
    S. Fugleberg, K. Kolendorf, B. Thorsteinsson, H. Bliddal, B. Lund, and F. Bojsen, The relationship between plasma concentrations and plasma disappearance rate of immunoreactive insulin in normal subjects, Diabetologia 22: 437–440 (1982).PubMedCrossRefGoogle Scholar
  84. 84.
    J.S. Striffler, and D.L. Curry, Kinetics of insulin clearance by the liver in perfused liver-pancreas, Endoc. Res. Comm. 7: 231–239 (1980).CrossRefGoogle Scholar
  85. 85.
    S.S. Solomon, L.F. Fenster, J.W. Ensinck, and R.H. Williams, Clearance studies of insulin and non-suppressible insulin-like activity in the rat liver, Proc. Soc. Exp. Biol. Med. 126: 116 (1967).Google Scholar
  86. 86.
    R.I. Misbin, T.J. Merimee, and J.H. Lowenstein, Insulin removal by isolated perfused rat liver, Am. J. Physiol. 230: 171–177 (1976).PubMedGoogle Scholar
  87. 87.
    T. Morishima, R.E. Offord, and J. Radziuk,x_Time-course of the development of plasma partially-degraded insulin fragments in dog in vivo. Diabetologia (in press).Google Scholar
  88. 88.
    W.C. Duckworth, K.R. Runyan, R.K. Wright, P.A. Halban, and S.S. Solomon, Insulin degradation by hepatocytes in primary culture, Endocrinology 108: 1142–1147 (1981).PubMedCrossRefGoogle Scholar
  89. 89.
    W.C. Duckworth, and A.E. Kitabchi, Insulin metabolism and degradation, Endocrine Reviews 2: 210–233 (1981).PubMedCrossRefGoogle Scholar
  90. 90.
    R.I. Misbin, and E.C. Almira, The fate of insulin in rat hepatocytes. Evidence for the release of an immunologically active fragment, Diabetes 33: 355–361 (1984).PubMedCrossRefGoogle Scholar
  91. 91.
    R.K. Assoian, H.S. Tager, [(125I) lodotyrosyll] insulin. Semisynthesis, receptor binding, and cell-mediated degradation of a B chain-labelled insulin, J. Biol. Chem. 256: 4042–4049 (1981).PubMedGoogle Scholar
  92. 92.
    W.C. Duckworth, F. Stentz, M. Heinemann, and A.E. Kitabchi, Initial site of cleavage of insulin by insulin protease, Proc. Natl. Acad. Sci. USA 76: 635 (1979).Google Scholar
  93. 93.
    P.T. Varandani, and M.A. Nafz, Insulin degradation. XVI. Evidence for the sequential degradative pathway in isolated liver cells, Diabetes 25: 173–179 (1976).PubMedCrossRefGoogle Scholar
  94. 94.
    G. Weitzel, K. Eisele, V. Schulz, and W. Stock, Structure and activity of insulin. XII. Further studies on biologically active synthetic fragments of the B chain, Hoppe-Selyer Z., Physiol Chem. 354: 321 (1973).CrossRefGoogle Scholar
  95. 95.
    K. Kikuchi, J. Larner, R.J. Freer, A.R. Day, H. Morris, and A. Dell, Studies on the biological activity of degraded insulins and insulin fragments, J. Biol. Chem. 255: 9281–9288 (1980).PubMedGoogle Scholar
  96. 96.
    K. Kikuchi, J. Larner, R.J. Freer, and A.R. Day, Effect of insulin fragments in biological activity of insulin and desoctapeptide insulin. 1. Potentiation of biological activities, J. Biol. Chem. 256: 9445–9449 (1981).PubMedGoogle Scholar
  97. 97.
    J. Larner, G. Galasko, K. Cheng, A.A. DePaoli-Roach, L. Huang, P. Daggy, and J. Kellogg, Generation by insulin of a chemical mediator that controls protein phosphorylation and dephosphorylation, Science 205: 1408 (1979).CrossRefGoogle Scholar
  98. 98.
    J.R. Seals, and L. Jarett, Pyruvate dehydrogenase activation in adipocyte mitochondria by an insulin-generated mediator from muscle, Science 206: 1407–1408 (1979).PubMedCrossRefGoogle Scholar
  99. 99.
    R.C. Turner, J.A. Grayburn, G.B. Newman, and J.D.N. Nabarro, Measurement of insulin delivery rate in man, J. Clin. Endocrinol 33: 279–286 (1971).CrossRefGoogle Scholar
  100. 100.
    T. Morishima, C. Bradshaw, and J. Radziuk, Measurement and validation of the post-hepatic rate of insulin appearance under nonsteady state conditions, Am. J. Physiol. (in press).Google Scholar
  101. 101.
    D.G. Johnston, K.G. H.H. Alberti, O.K. Faber, C. Binder, and R. Wright, Hyperinsulinism of hepatic cirrhosis diminished degradation or hypersecretion? Lancet 1: 10–12 (1977).CrossRefGoogle Scholar
  102. 102.
    R. Rossell, R. Yomis, Casamitjana, R. Segura, E. Vilardell, and F. Rivers, Reduced hepatic insulin extraction in obesity: relationship with plasma insulin levels, J. Clin. Endocrinol. Metab 56: 608–611 (1983).PubMedCrossRefGoogle Scholar
  103. 103.
    H.T. Meistas, S. Margolis, and A.A. Kowarski, Hyperinsulinemia of obesity is due to decreased clearance of insulin, Am. J. Physiol. 245: E155–E159 (1983).PubMedGoogle Scholar
  104. 104.
    D.P. Frost, M.C. Srivastava, R.H. Jones, J.D.N. Nabarro, and P.H. Sonksen, The kinetic of insulin metabolism in diabetes mellitus, Postgrad. Med. J. 49: 949–954 (1973).PubMedGoogle Scholar
  105. 105.
    E. Bonora, I. Zavaroni, C. Coscelli, and U. Butturini, Decreased hepatic insulin extraction in subjects with mild glucose intolerence, Metabolism 32: 438–446 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • J. Radziuk
    • 1
  • T. Morishima
    • 2
  1. 1.Dept. of MedicineMcGill UniversityMontrealCanada
  2. 2.First Department of MedicineOsaka University HospitalFukushima-Ju Osaka 553Japan

Personalised recommendations