Advertisement

New Probes to Study Insulin Resistance in Men; Futile Cycle and Glucose Turnover

  • Mladen Vranic
  • Alexandre Wajngot
  • Suad Efendic
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 189)

Abstract

Insulin resistance has been measured in man by nonsteady state tracer methodology. Increase in overall glucose utilization and suppression of glucose production was measured when hyperglycemia was achieved either by infusing glucagon or glucose. With the first method, insulin resistance was assessed in obese man and in lean hypertriglyceridemic patients. With the second method, insulin resistance was assessed in lean mild type II diabetics. These methodologies can only assess deficiences in overall glucose utilization and glucose production, but cannot delineate the defect in glucose uptake by the liver. However, if a given metabolic event is essentially characteristic of only one organ, metabolic abnormalities specific to that organ can be detected in vivo provided there is a probe specific to that metabolic pathway. Therefore, in lean mild type II diabetics the liver glucose futile cycle was assessed by a double tracer method. Previously it was shown that liver glucose futile cycling is increased in diabetic dogs. In healthy control subjects in basal state and during glucose infusion, the futile cycle could not be detected, but it represented a major part of glucose metabolism in liver of type II diabetics. It appears, therefore, that most of the glucose taken up by the liver during the glucose challenge in diabetics reenters the blood stream without being oxidized or polymerized. On the basis of these studies, it was concluded that excessive hyperglycemia in the diabetics during glucose infusion is due to a decrease in irreversible glucose uptake (impaired phosphorylation and futile cycling) and to a decrease in suppression of glucose production. The relative contribution of the liver and periphery to hyperglycemia seems to be almost equivalent. The mechanism behind the increased glucose cycle activity is not clear. It may be due to a relative decrease of glycogen synthase or increase in glucose-6-phosphatase or both. These observations in mild lean type II diabetics may have implications also in some other types of diabetes, since we have observed that futile cycling is even more marked in obese type II diabetics and that it could account in part for the diabetogenic effect of growth hormone in acromegalics.

Keywords

Insulin Resistance Glucose Production Glucose Infusion Futile Cycle Glucose Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Efendic, R. Luft, and A. Wajngot, Endocrine Review 5: 395–410 (1984).CrossRefGoogle Scholar
  2. 2.
    S. W. Shen, G.H. Reaven, and J.W. Farquhar, J. Clin. Invest. 49: 2151 (1970).PubMedCrossRefGoogle Scholar
  3. 3.
    R.A. DeFronzo, J.D. Tobin, and R. Andres, Am. J. Physiol. 237: E214 (1979).PubMedGoogle Scholar
  4. 4.
    G. Kolterman, L.J. Insel, M. Sackow, and J.H. Olefsky, J. Clin. Invest. 65: 1272 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    C.R. Kahn, Metabolism 27: 1893 (1978).CrossRefGoogle Scholar
  6. 6.
    E. Cerasi, and R. Luft, Acta Endocrinol. (Copenh) 55: 278–304 (1967).Google Scholar
  7. 7.
    E. Cerasi, Acta Endocrinol (Copenh) 55: 163 (1967).Google Scholar
  8. 8.
    E. Cerasi, R. Luft, Diabetes 16: 615–627 (1967).PubMedGoogle Scholar
  9. 9.
    G.H. Reaven, and J.H. Olefsky, “Adv. Metab. Disord.” R. Levine, and R. Luft, eds., Academic Press, New York, vol. 9, 313–331 (1978).Google Scholar
  10. 10.
    W.K. Ward, J.C. Neard, J.B. Halter, M.A. Pfeifer, D. Porte, Diabetes Care 7: 491–504 (1980).CrossRefGoogle Scholar
  11. 11.
    S. Efendic, A. Wajngot, E. Cerasi, and R. Luft, Proc. Natl. Acad. Sci. 77: 7425–7429 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    R.N. Bergman, Y.Z. Ider, C.R. Bowden, and C. Cobelli, Am. J. Physiol. 236: E667 (1979).PubMedGoogle Scholar
  13. 13.
    D.T. Finegood, G. Pacini, and R.N. Bergman, Diabetes 33: 362 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    R.C. De Bodo, R. Steele, N. Altszuler, A. Dunn, and J.S. Bishop, Recent Prog. Horm. Res. 19: 445–488 (1963).Google Scholar
  15. 15.
    J.S. Cowan, and G. Hetenyi, Metabolism 20: 360–373.Google Scholar
  16. 16.
    J. Radziuk, K.H. Norwich, and M. Vranic Am. J. Physiol 234: E84–93 (1978).PubMedGoogle Scholar
  17. 17.
    M. Vranic, S. Morita, and G. Steiner, Diabetes 29: 169–176 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    A.D. Cherrington, M. Vranic, Metabolism 23: 729–744 (1974).PubMedCrossRefGoogle Scholar
  19. 19.
    G. Steiner, S. Morita, and M. Vranic, Diabetes 29: 899–905 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Perley, D.M. Kipnis, Diabetes 15: 867–874 (1966).PubMedGoogle Scholar
  21. 21.
    R.N. Bergman, Federation Proc. 36: 265–270 (1977).Google Scholar
  22. 22.
    C.A. Verdonck, R.A. Rizza, J.E. Gerich, Diabetes 30: 535–537 (1981).CrossRefGoogle Scholar
  23. 23.
    J.D. Best, G.J. Taborsky, J.B. Halter, D. Porte Jr., Diabetes 30: 847–850 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    R. Wajngot, A. Roovete, M. Vranic, R. Luft, and S. Efendic, Proc. Natl. Acad. Sci. USA 79: 4432–4436 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Wajngot, R. Luft, M. Vranic, and S. Efendic, Horm. Metab. Res. 14: 564–568 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Wajngot, R. Luft, and S. Efendic, Acta Endocrinologica 104: 1–8 (1983).Google Scholar
  27. 27.
    J. Radziuk, T.J. McDonald, D. Rubenstein, and J. Dupre, Metabolism 28: 300–307 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    C.B. Newgard, L.J. Hirsh, D.W. Foster, and D. McGarry, J. Biol. Chem. 258: 8046–8052 (1983).PubMedGoogle Scholar
  29. 29.
    E.A. Newsholme, C. Start, “Regulation in Metabolism,” John Wiley and Sons, London (1973).Google Scholar
  30. 30.
    J. Katz, and R. Rognstadt, Curr. Top Cell. Regul. 64: 237–289 (1976).Google Scholar
  31. 31.
    J. Katz, and A. Dunn, Biochemistry 6: 1–5 (1967).PubMedCrossRefGoogle Scholar
  32. 32.
    N. Altszuler, A. Barkai, C. Bjerknes, B. Gottlieb, and R. Steele, Am. J. Physiol. 229: 1662–1667 (1975).PubMedGoogle Scholar
  33. 33.
    H.L. Lickley, G.G. Ross, and M. Vranic, Am. J. Physiol. 230: 1159–1162 (1979).Google Scholar
  34. 34.
    M. Vranic, H.L. Licley, F.W. Kemmer, G. Perez, G. Hetenyi, T.W. Hatton, and N. Kovacevic, “Etiology and Pathogenesis of Insulin Dependent Diabetes Mellitus,” J.M. Martin, R.H. Ehrlich, and F.J. Holland, eds., Raven Press, New York, 153–178 (1981).Google Scholar
  35. 35.
    B. Issekutz, Metabolism 26: 157–170 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    S. Efendic, A. Wajngot, and M. Vranic, Proc. Natl. Acad. Sci. USA (1985, in press).Google Scholar
  37. 37.
    H.G. Hers, Ann. Rev. Biochem. 45: 167–189 (1976).Google Scholar
  38. 38.
    M. El-Refai, R.N. Bergman, Am. J. Physiol 231: 1608–1619 (1976).PubMedGoogle Scholar
  39. 39.
    C.B. Newgard, D.W. Foster, J.D. McGarry, Diabetes 33: 192–195 (1984).PubMedCrossRefGoogle Scholar
  40. 40.
    C.J. Fisher, and M.R. Stetten, Biochim. Biophys. Acta 121: 102–109 (1966).PubMedCrossRefGoogle Scholar
  41. 41.
    S.V. Jakobsson, and G. Dallner, Biochim. Biophys. Acta 198: 66–75 (1968).Google Scholar
  42. 42.
    T.L. Hanson, and R.C. Nordlie, Biochim. Biophys. Acta 198: 66–75 (1970).PubMedCrossRefGoogle Scholar
  43. 43.
    S. Karlander, A. Roovete, A. Wajngot, M. Vranic, and S. Efendic, Diabetologia 27: 294A. (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Mladen Vranic
    • 1
  • Alexandre Wajngot
    • 2
  • Suad Efendic
    • 2
  1. 1.Departments of Physiology and MedicineUniversity of TorontoTorontoCanada
  2. 2.Department of EndocrinologyKarolinska HospitalStockholmSweden

Personalised recommendations