Myelin pp 225-258 | Cite as

Metabolism of Myelin

  • Joyce A. Benjamins
  • Marion E. Smith


By “metabolism of myelin,” we refer to the molecular events involved in the synthesis of myelin components and in the subsequent assembly, maintenance, and turnover of the myelin sheath. The deposition of myelin involves coordination of the synthesis of its various lipid and protein components and the interaction of these components to give a stable membrane. Degradation of myelin components occurs as a reaction of the myelin sheath to injury, but may also be required for normal maintenance and remodeling of the membrane. The topographic features of the myelin sheath can be expected to limit partially the metabolism of myelin. The roles of membrane fluidity and cytoplasmic inclusions in the.turnover of compact myelin lamellae are not well understood, but obviously metabolism in this system is integrally linked to both anatomical and membrane structure.


Sciatic Nerve Myelin Sheath Specific Radioactivity Myelin Protein Myelin Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahdel-Latif, A. A., and Sunth, J. P., 1970, In vivo incorporation of choline, glycerol and orthophosphate into lecithin and other pbQspholipîds of subcel lular fractions of rat cerebellum, Biochirn. Biolrhy.s. Acta 218: 134.Google Scholar
  2. Agrawal, H. C., and Hartman, B. II., 1980, Proteolipid protein audothet-proteins of myelin, in: Proteins of the fVereou.s System, 2nd ed. ( R. A. Bradshaw and D. M. Schneider. eds.), pp. 145–169, Raven Press, New York.Google Scholar
  3. Agrawal, H. C., Banik, N. I., Bone, A. H., Davison, A. N., Mitchell, R. F., and Spoilt,.M., 1970, the identity-of a myelin-like traction isolated from developing brain, Biochem. J. 120: 635.PubMedGoogle Scholar
  4. Agrawal, H. C., Trotter, J. L., Burton, R. îV1., and Mitchell, R. F., 1974, Evidence fora precursor role of a myelin subtraction, Biochem. J. 140: 99.PubMedGoogle Scholar
  5. Agrawal, H. C., Fujimoto, K., and Burton, R. M., 1975, Accumulation and turnover of Folch-Lees proteolipid protein in developing and adult rat brain, Trans. Ant. Soc. Neu roc hem. 6: 127 (abstract).Google Scholar
  6. Agrawal, H. C., Randle, C. I., and Agrawal, D., 1982, let vino acylation of rat brain myelin proteolipid protein, J. Bol. Chem. 257:-1588.Google Scholar
  7. Agrawal, H. C., Schmidt, R. E., and Agrawal, D., 1983, In vino incorporation of [31-Jpalmitic acid into Po protein, the major intrinsic protein of rat sciatic nerve myelin: Evidence for covalent linkage of fatty acid to Po, J. Biot Chem. 258: 6556.Google Scholar
  8. Arnorese, P. A., Ellis, S. B., llarpold, M. M., and Linthicum, D. S., 1983, Clotting of a cDNA complementary to mouse myelin basic protein niRNA, Trans. Arno Soc. Neeiroeleerer. 14: 165.Google Scholar
  9. Ansel!, G. B., 1973, Phospholipids and the nervous sytem, in: Form and Function of Phospholipids, Vol. 3 (G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson, eds.), pp. 377-’122, Elsevier, New York.Google Scholar
  10. Autilio-Gambecti, L., Gambetti, P., and Shafer, B., 1975, Glial and neuronal contribution to proteins and glycoprotcits recovered in myelin factions, Brain Res. 84: 336.CrossRefGoogle Scholar
  11. Baldwin, G. S., and Carnegie, P. R, 1971, Isolation and partial characterization of methylatedarginines from the encephalitogeuic basic protein of myelin, Bioclrent. J. 123: 69.Google Scholar
  12. Battik, N. L., and Davison, A. N., 1969, Enzyme activity of myelin and subcellular fractions in the developing rat brain, Bioclrent. J. 115: 1051.Google Scholar
  13. Ban ik, N. L. and Davison, A. N., 1971, Exchange of sterols between myelin and other membranes of developing rat brain, Biochem. J. 122: 751.PubMedGoogle Scholar
  14. Banik, N. I., and Smith, M. E., 1976, In vitro protein synthesis by oligodendroglia, Neu rose/. Lett. 2:252.Google Scholar
  15. Barbaresc, E., and Pfeiffer, S. E. 1981, Developmental regulation of myelin basic protein in dispersed cultures, Proc. Natl. Acad. Sei. U.S.A. 78: 1953.Google Scholar
  16. Barbarese, E., Braun, P. F:., and Carson, J. H., 1977, Identification of prelarge and presmall basic proteins in mouse myelin and their structural relationship to large and small basic proteins, Proc. Natl. Mead. Sci. U.S.A. 74: 3360.Google Scholar
  17. Benes, F. R., Higgins. J. C., and Barnett, R. J., 1973, Ulttastructual localization of phospholipid synthesis in the rat trigeminal nerve during myeIiHatloo, J. Cell Biol. 57: 613.PubMedCrossRefGoogle Scholar
  18. Benjamins, J. A. 198–1. Protein metabolism of oligodeHth-oglial cells in: Advances in Neurochemistry,Vol. 5, Oligodendroglfia (\C Norton, ed.). Chaplet 3, pp. 87–123, Plenum Press, New York.Google Scholar
  19. Benjamins, J. A., and Iwata, R., 1979, Kinetics of entry of gd1ac[olipids and phospholipids into myelin, J. Neurochem. 32: 921.PubMedCrossRefGoogle Scholar
  20. Benjamins, J. A., and McKhann, G. M., 1973a, [2-’II]GIyeero1 as a precursor of phospholipids in rat brain: Evidence for lack of recycling, J. Neurochem. 20: 1111.Google Scholar
  21. Benjamins, J. A., and McKhann, G. M., 1973b, Properties and metabolism of soluble lipoproteins containing choline and ethanolamine phospholipids in rat brain, J. Neurochem. 20: 1121.PubMedCrossRefGoogle Scholar
  22. Benjamins, J. A., and Morell, P., 1978, Proteins of myelin and their metabolism, Neurochem. Res. 3: 137.PubMedCrossRefGoogle Scholar
  23. Benjamins, J. A., and Smith, M. E., 1977, Metabolism of myelin, in: AlyeIîgt ( P. Morel!, ed.), pp. 233–270, Plenum Press, New York.Google Scholar
  24. Benjamins, J. A., Herschkowitz, N., Robinson, J., and McKhann, G. M., 1971, The effects of inhibitors of protein synthesis on incorporation of lipids into myelin, J. Neurochem. 18: 729.PubMedCrossRefGoogle Scholar
  25. Benjamins, J. A., Miller, K., and McKhann, G. NI., 1973, Myelin subtractions in developing rat brain: Characterization and sultatide metabolism, J. Neu rochent. 20: 1589–1603.Google Scholar
  26. Benjamins, J. A., Guarnieri, M., Sonueborn, M., and McKhann, G. M., 1971, Sulfatide synthesis in isolated oligodendroglial and neuronal cells, J. Netnoc/tent. 23: 751.Google Scholar
  27. Benjamins, J. A., Jones, M., and Morell, P., 1975, Appearance of newly synthesized protein in myelin of young rats, J. Neurochem. 24: 1117.PubMedCrossRefGoogle Scholar
  28. Benjamins, J. A., Fitch, J., and Radin, N. S., 1976a, Effects of ceramide analogs on myelinating organ cultures, Brain Res. 102: 267.PubMedCrossRefGoogle Scholar
  29. Benjamins, J. A., Gray, M., and Morell, P., 1976b, Metabolic relationships between rnyelin subtractions: Entry of proteins, J. Neurochem. 27: 571.PubMedCrossRefGoogle Scholar
  30. Benjamins, J. A., Miller, S., and Morel’, P., 1976c, Metabolic relationships between myelin subtractions: Entry of galactolipids, J. Neurochem. 27: 565.PubMedCrossRefGoogle Scholar
  31. Benjamins, J. A., Iwata, R., and Hazlett, J., 1978, Kinetics of entry of proteins into the myelin membrane, J. Neurochem. 31: 1077.PubMedCrossRefGoogle Scholar
  32. Benjamins, J. A., Hadden, T., and Skoff, R. P., 1982, Cerebroside sulfotrrnsferase in Golgi-enriched fractions from rat brain, J. Neurochem. 38: 233.PubMedCrossRefGoogle Scholar
  33. Benjamins, J. A., Morell, P., Ilartman, B. K., and Agrawal, H. C., 1984 CNS myelin, in: Handbook of Neurochemistry ( A Lajtha, ed.). pp. 361–415, Plenum Press, New York.Google Scholar
  34. Bhat, S., Barbarese, E., and Pfeiffer, S. E., 1981, Requirement for nonoligodendrocyte cell signals for enhanced myelinogenic gene expression in long-term cultures of purified rat oligodeudrocytes, Proc. Natl. Acad. Sci. U.S.A. 78: 1283.PubMedCrossRefGoogle Scholar
  35. Bizzozero, O. A., Pasquini, J. M., and Soto, E. F., 1982, Differential effect of colchicine upon entry of proteins into myelin and myelin related membranes, Neurochem. Res. 7: 1415.PubMedCrossRefGoogle Scholar
  36. Bornstein, M. B., and Murray, M. R., 1958, Serial observations on patterns of growth, myelin formation, maintenance and degeneration ut cultures of newborn rat and kitten cerebellum, J. Biophys. Biochem. Cytol. 4: 199.CrossRefGoogle Scholar
  37. Bornstein, M. B., and Raine, C. S., 1970, Experimental allergic encephalomyelitis antiserum inhibition of myelination in vitro, Lab. Invest. 23: 536.PubMedGoogle Scholar
  38. Bowen, D. M., and Radin, N. S., 1969, Cerebroside galactosidase: A method for determination and a comparison with other lysosomal enzymes in rat brain, J. Neurochem. 16: 501.PubMedCrossRefGoogle Scholar
  39. Bradbury, K., and Lumsden, C. E., 1979, ’,Me chemical composition of myelin in organ cultures of rat cerebellum, J. Neurochem. 32:1.15.Google Scholar
  40. Bradel, E. J., and Prince, F. P., 1983, Cultured neonatal rat oligodendrocytes elaborate myelin membrane in the absence of neurons, J. Neurosci. Res. 9: 381.PubMedCrossRefGoogle Scholar
  41. Branrmer, M. J., 1978, The protein-mediated transfer of lechi thin to subtractions of mature’ and developing rat myelin, J. Neurochem. 31: 1435.CrossRefGoogle Scholar
  42. Branrmer, M. J., and Carey, S. G., 1980, Incorporation of choline and mosttol into phospholipids of isolated bovine oligodendrocyte perikaryB, J. Neurochem. 35: 873.CrossRefGoogle Scholar
  43. Braun, P. E., Pereyra, P. M., and Greenfield, S., 1980,.Myelin organization and development: A biochemical perspective, Prog. Clin. Biol. Res. 49: 1.Google Scholar
  44. Brenkert, A., and Radin, N. S., 1972, Synthesis of galactocerebroside and glucocerebroside by rat brain: Assay procedures and changes with age, Brait[Res. 36: 183.Google Scholar
  45. Brookes, J. P., Raff, M. C., Nishiguchi, D. J., and Winter, J., 1980, Studies on cultured rat Schwann cells. 3. Assays for peripheral myelin proteins, J. Neurocytol. 1: 67.CrossRefGoogle Scholar
  46. Brostoff, S. W., and Eylar, E. H., 1971, Localization of methylated arginine in the A protein front myelin, Proc. Natl. Acad. Sci. U.S.A. 68: 765.CrossRefGoogle Scholar
  47. Burkart, T., Caimi, L., Siegrist, H. P., Herschkowitz, N. N., and Weismann, U. N., 1982, Vesicular transport of sulfatide in the myclInafIng mouse brain, J. Biot Client. 257: 3151.Google Scholar
  48. Burton, R. M., Sodd, M. A., and Brady. R. O., 1958, ‘rule incorporation of galactose into galactolipids, J. Biol. Chem. 233: 1053.Google Scholar
  49. Butler, M., and Morcll, P., 1982, Sidedness of phospholipid synthesis on brain membranes, J. Neurochem. 39: 155.CrossRefGoogle Scholar
  50. Campagnoni, A. T., and Hunkeler, M. J., 1980, Synthesis of the myelin proteolipid protein in developing mouse brain, J. Neurobiol. 11: 355.PubMedCrossRefGoogle Scholar
  51. Campagnoni, A. T., Carey, G. D., and Yu, Y.-T., 1980, In nitro synthesis of the myelin basic proteins: Subcellular site of synthesis, J. Neurochem. 36: 677.Google Scholar
  52. Campagnoni, C. W., Carey, G. D., and Campagnoni, A. T., 1978, Synthesis of myelin basic proteins in the developing mouse brain, Arch. Biochem. Biophys. 190: 118.CrossRefGoogle Scholar
  53. Carnegie, P. R., and Moore, W. J., 1980, Myelin basic protein, in: Proteins of the Nervous System, 2nd cd. ( R. A. Bradshaw and D. M. Schneider, eds.), 119–143, Raven Press, New York.Google Scholar
  54. Carnegie, P. R., Kemp, B. E., Dunkley, P. R., and Murray, A. W., 1973, Phosphorylation of myelin basic protein by an adenosine 3’-5’-cyclic monosphosphate-dependent protein kinase, Biochem. J. 135: 569.PubMedGoogle Scholar
  55. Carnegie, P. R., Dunkley, P. R., Kemp, B. E., and Murray, A. W., 1974, Phosphorylation of selected serine and thrconine residues in myelin basic protein by endogenous and exogenous protein kinases, Nature (London) 249: 147.CrossRefGoogle Scholar
  56. Carson, J. S., Nielson, S., and Barbarese, E., 1983, Developmental regulation of myelin basic protein expression in mouse brain, Dec. Biol. 96: 485.CrossRefGoogle Scholar
  57. Cohen, S. R., and Bernsohn, J., 1973, Incorporation of 1-“C-labeled fatty acids into isolated neuronal soma, astroglia and oligodendroglia from calf brain, Brain Res. 60: 521.PubMedCrossRefGoogle Scholar
  58. Cohen, S. R., and Bernsohn, 1978, The in vivo incorporation of linolenic acid into neuronal and glial cells and myelin, J. Neurochem. 30: 661.PubMedCrossRefGoogle Scholar
  59. Colman, D. R., Kreibich, G., Frey, A. B., and Sabatini, D. D., 1982, Synthesis and incorporation of myelin polypeptides into CNS myelin, J. Cell Biol. 95: 598.PubMedCrossRefGoogle Scholar
  60. Costantino-Ceccarini, E., and Morell, P., 1972, Biosynthesis of brain sphinogolipids and myelin accumulation in the mouse, Lipids 7: 656.PubMedCrossRefGoogle Scholar
  61. Costantino-Ceccarini, E., and Suzuki, K., 1975, Evidence for the presence of UDP-galactose: ccramide galactosyltransferasc in rat myelin, Brain Res. 93: 358.PubMedCrossRefGoogle Scholar
  62. Daniel, A., Day, E. D., and Kaufman, B., 1972, Studies on central nervous system myelin, Fed. Proc. Fed. Am. Soc. Exp. Biol. 31: 490.Google Scholar
  63. Danks, D. M., and Matthieu, J. M., 1979, Hypotheses regarding myelination derived from comparisons of myelin subtractions, Life Sci. 24: 1425.PubMedCrossRefGoogle Scholar
  64. Davison, A. N., 1961, Metabolically inert proteins of the central and peripheral nervous system, muscle and tendon, Biochem. J. 78: 272.PubMedGoogle Scholar
  65. Davison, A. N., 1970, The biochemistry of the myelin sheath, in: Myelination ( A. N. Davison and A. Peters, eds.), pp. 80–161, Charles C Thomas, Springfield, Illinois.Google Scholar
  66. Dc Lores Arnaiz, G. R., DeCanal, M. A, and De Robertis, E., 1971, Turnover of proteins in subcellular fractions of rat cerebral cortex, Brain Res. 31; 179.CrossRefGoogle Scholar
  67. Deshmukh, D. S., and Lee, P. K., 1983, Biosynthesis of glycolipids in Golgi fractions of bovine oligodendroglia, Trans. Am. Soc. Neurochem. 14: 279.Google Scholar
  68. Deshmukh, D., Flynn, T., and Picringer, R., 1974, The biosynthesis and concentration of galactosyl diglycezide in glial and neuronal enriched fractions and actively myelinating rat brain, J. Neurochem. 2: 479.CrossRefGoogle Scholar
  69. Des Jardins, K. C., and Morell, P., 1983, The phosphate groups modifying myelin basic proteins are metabolically labile; the methyl groups are stable, J. Cell Biol. 97: 438.CrossRefGoogle Scholar
  70. D’Monte, B., Mela, P., and Marks, N., 1971, Metabolic instability of myelin protein and proteolipid fractions, Eur. J. Biochem. 23: 355.PubMedCrossRefGoogle Scholar
  71. Dobbing, J., 1963, The entry of cholesterol into rat brain during development, J. Neurochem. 10: 739.CrossRefGoogle Scholar
  72. Droz, B., and Boyenval, J., 1975, Lc’ reticulum endoplasmique des axones: Son role probable dans le transport axoplasmique desphospholipids membranaires, J. Microsr. Biol. Cell. 23: 45.Google Scholar
  73. Duncan, I. D., Aguayo, A. J., Bunge, R. P., and Wood, P. M., 1981, Transportation of rat Schwann cells grown in tissue culture into the mouse spinal cord, Neurol. Sri. 49: 241.CrossRefGoogle Scholar
  74. Edmond, J., 1974, Ketone bodies as precursors of sterols and fatty acids in the developing rat, J. Biol. Chem. 249: 72.PubMedGoogle Scholar
  75. Endo, T., and Hidaka, H., 1980, Ca2’-caImodulin dependent phosphorylation of myelin isolated from rabbit brain, Biochem. Biophys. Res. Commun. 97: 553.PubMedCrossRefGoogle Scholar
  76. Eng, L. F., and Smith, M. E., 1966, The cholesterol complex in the myelin membrane, Lipids 1: 296.PubMedCrossRefGoogle Scholar
  77. Eto, Y., and Suzuki, K., 1972a, Cholesterol esters in developing rat brain: Concentration and fatty acid composition, J. Neurochem. 19: 109.CrossRefGoogle Scholar
  78. Eto, Y., and Suzuki, K., 19726, Cholesterol esters in developing rat brain: Enzymes of cholesterol ester metabolism, J. Neurochem. 19: 117.Google Scholar
  79. Eto, Y., and Suzuki, K., 1973, Developmental changes of cholesterol ester hydrolases localized in myelin and rnicrosomcs of rat brain, J. Neurochem. 20: 1475.PubMedCrossRefGoogle Scholar
  80. Everly, J. L., Brady, R. O., and Quarles, R. H., 1973, Evidence that the major protein in rat sciatic nerve is a glycoprotein, J. Neurochem. 21: 329.PubMedCrossRefGoogle Scholar
  81. Farrell, D., and McKhann, G., 1971, Characterization of cerebroside sulfotransferase from rat brain, J. Biol. Chem. 246: 4691.Google Scholar
  82. Fischer, C. A., and Morell, P., 1974, Turnover of proteins in myelin and myelin-like material of mouse brain, Brain Res. 74: 51.PubMedCrossRefGoogle Scholar
  83. Fishman, M. A., Trotter, J. I., and Agrawal, H. C., 1977, Selective loss of myelin proteins during autolysis, Neurochem. Iles. 2: 247.CrossRefGoogle Scholar
  84. Fry, J., Lehrer, G., and Bornstein, M., 1972, Sulfacide synthesis in CNS tissue culture and its inhibition by experimental allergic encephalomyelitis serums, Science 175: 192.PubMedCrossRefGoogle Scholar
  85. Fry, J. M., Lehrer, G. M., and Bornstein, M. B., 1973, Experimental inhibition of myelination in spinal cord cultures: Enzyme assays, J. Neurobiol. 4: 453.PubMedCrossRefGoogle Scholar
  86. Fry, J. M., Weissbarth, S., Lehrer, G. M., and Bornstein, M. B., 1974, Cerebroside antibody inhibits sulfatide synthesis and myelination and demyelinates in cord tissue cultures. Science 183: 540.PubMedCrossRefGoogle Scholar
  87. Fujimoto, K., Roots, B. I., Burton, R. M., and Agrawal, H. C., 1976, Morphological and biochemical characterization of light and heavy myelin isolated from developing rat brain, Biochem. Biophys. Arta. 426: 659.CrossRefGoogle Scholar
  88. Gagnon, J., Finch, P. R., Wood, D. D., and Moscarello, M. A., 1971, Isolation of highly purified myelin protein, Biochemistry 10: 4756.PubMedCrossRefGoogle Scholar
  89. Garwood, M. M., Gilbert, W. R., and Agrawal, H. C., 1983, In vivo acylation of proteolipid protein and DM-20 in myelin and myelin subfractions of developing rat brain, Neurochem. Res. 8: 649.Google Scholar
  90. Gehicke-Harter, P. J., Althaus, H.-H., Schwartz, P., and Neuhoff, V., 1981, Oligodendrocytes from postnatal cat brain in cell culture. I. Regeneration and maintenance, Dev. Brain. Res. 1: 497.CrossRefGoogle Scholar
  91. Gilbert, W. R., Garwood, M. M., Agrawal, D., Schmidt, M. E., and Agrawal, H. C., 1982, Immunoblot identification of phosphorylated basic proteins of rat and rabbit CNS and PNS myelin, Neurochem. Res. 7: 1495.PubMedCrossRefGoogle Scholar
  92. Giorgi, P. P., and DuBois, H., 1981, Labeling by axonal transport of myelin-associated proteins in the rabbit visual pathway, Biochem. J. 196: 537.PubMedGoogle Scholar
  93. Giorgi, P. P., Karlsson, J. O., Sjostrand, J., and Field, E. J., 1973, Axonal flow and myelin protein in the optic pathway, Nature (London) New Biol. 244: 121.Google Scholar
  94. Glasgow, M. S., Quarles, R. II., and Grollman, S., 1972, Metabolism of fucoglycoproteins in the developing rat brain, Brain Res. 42: 129.PubMedCrossRefGoogle Scholar
  95. Gould, R. M., 1977, Glycoprotein incorporation into peripheral nerve myelin, J. Cell Biol. 75: 326.PubMedCrossRefGoogle Scholar
  96. Gould, R. M., and Dawson, R. M. C., 1976, Incorporation of newly formed lecithin into peripheral nerve myelin, J. Cell Biol. 68: 480.PubMedCrossRefGoogle Scholar
  97. Haley, J. E., and Ledeen, R. W., 1979, Incorporation of axonally transported substances into myelin lipids, J. Neurochem. 32: 735.PubMedCrossRefGoogle Scholar
  98. Haley, J. E., Samuels, F. G., and Ledeen, R. W., 1981, Study of myelin purity in relation to axonal contaminants, Cell. Mol. Neurobiol. 1: 175.PubMedCrossRefGoogle Scholar
  99. Hall, C., and Lim, I., 1981, Developmental changes in the composition of polyadenylated RNA isolated from free and membrane-bound polyribosomes of the rat forebrain, analyzed by translation in vitro, Biochem. J. 196: 327.PubMedGoogle Scholar
  100. Hall, C., Mandevan, I., Whatley, S., Ling, T.-S., and Lim, L., 1982, The polyadenylated RNA directing the synthesis of the rat myelin basic proteins is present in both free and membrane-bound forebrain polyribosomes, Biochem. J. 202: 407.PubMedGoogle Scholar
  101. Hartman, B. K., Agrawal, H. C., Kalmbach, S., and Shearer, W. T., 1979, A comparative study of the immunohistochemical localization of myelin basic protein to myelin and oligodendrocytes in chicken and rat brain, J. Comp. Neural. 188: 273.CrossRefGoogle Scholar
  102. Hartman, B. K., Agrawal, H. C., Agrawal, D., and Kalmbach, S., 1982, Development and maturation of central nervous myelin: Comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes, Proc. Natl. Acad. Sei. U.S.A. 79: 4217.CrossRefGoogle Scholar
  103. Harvey, M. S., Wirtz., K. W. A., Kamp, H. H., Zegers, B. J. M., and Van Deenen, L. L. M., 1973, A study on phospholipid exchange proteins present in the soluble fractions of beef liver and brain, Biochim. Biophys. Acta 323: 234.Google Scholar
  104. Hauser, G., Eichberg, J., and Gonzalez-Sastre, F., 1971, Regional distribution of polyphosphoinositides in rat brain, Biochim. Biophys. Acta 248: 87.PubMedCrossRefGoogle Scholar
  105. Hayes, L., and Jungalwala, F. B., 1976, Synthesis and turnover of cerebroside and phosphatidyl serine of myelin and microsomal fractions of adult and developing rat brain, Biochem. J. 160: 195.PubMedGoogle Scholar
  106. Hedley-Whyte, E. T., Rawlins, F. A., Salpeter, M. M., and Uzman, B. G., 1969. Distribution of cholesterol-1,2–3H during maturation of mouse peripheral nerve, Lab. Invest. 21: 536.PubMedGoogle Scholar
  107. Hendelman, W. J., and Bunge, R. P., 1969, Radioautographic studies of choline incorporation in peripheral nerve myelin, J. Cell Biol. 40: 190.PubMedCrossRefGoogle Scholar
  108. Herschkowitz, N., McKhann, G. M., Saxena, S., and Shooter, E. M., 1968, Characterization of sulphatide-containing lipoproteins in rat brain, J. Neurochem. 15: 1181.PubMedCrossRefGoogle Scholar
  109. Herschkowitz, N., McKhann, G. M., Saxena, S., Shooter, E. M., and Herndon, R. M., 1969, Synthesis of sulphatide-containing lipoproteins in rat brain, J. Neurochem. 16: 1049.PubMedCrossRefGoogle Scholar
  110. Hildebrand, C., and Skoglund, S., 1971, Histochemical studies of adult and developing feline spinal cord white matter, Acta Physiol. Scand. Suppl. 364: 145.PubMedGoogle Scholar
  111. Hubbard, S. C., and Ivatt, R. J., 1981, Synthesis and processing of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 50: 555.PubMedCrossRefGoogle Scholar
  112. Inoue, T., Deshmukh, D. S., and Pieringer, R. A., 1971, The association of the galactosyl diglycerides with myelination. I. Changes in the concentration of monogalactosyl diglyceride in the microsomal and myelin fractions of brain of rats during development, J. Biol. Chem. 246: 5688.PubMedGoogle Scholar
  113. Jones, J., Rios, A., Nicholas, H., and Ramsey, R., 1975, The biosynthesis of cholesterol and other sterols in brain tissue: Distribution in subcellular fractions as a function of time after injection of [2–11C [acetateand [U-1 tC]glucose into 15 day old rats, J. Neurochem. 24: 117.PubMedCrossRefGoogle Scholar
  114. Jungalwala, F. B., 1974a, The turnover of myelin phosphatidyl choline and sphingomyelin in the adult rat brain, Brain Res. 78: 99.PubMedCrossRefGoogle Scholar
  115. Jungalwala, F.B., 1974b, Synthesis and turnover of cerebroside sulfate of myelin in adult and developing rat brain, J. Lipid Res. 15: 114.PubMedGoogle Scholar
  116. Kabara, J. J., 1973, A critical review of brain cholesterol metabolism, Prog. Brain Res. 40: 363.PubMedCrossRefGoogle Scholar
  117. Kies, M. W., Driscoll, B. F., Seil, F. J., and Alvord, E. C., 1973, Myelination inhibition factor: Dissociation from induction of experimental allergic encephalomyelitis, Science 178: 689.CrossRefGoogle Scholar
  118. Kishimoto, Y., Davies, W. E., and Radin, N. S., 1965, Turnover of the fatty acids of rat brain gangliosides, glycerophosphatides, cerebrosides and sulfatides as a function of age, J. Lipid Res. 6: 525.PubMedGoogle Scholar
  119. Konat, G., and Clausen, J., 1980, Suppressive effect of triethyl-lead on entry of proteins into the CNS myelin sheath in vitro, J. Neurochem. 35: 382.PubMedCrossRefGoogle Scholar
  120. Koper, J., Lopes-Cardozo, M., and Van Golde, L., 1981, Preferential utilization of ketone bodies for the synthesis of myelin cholesterol in vivo, Biochim. Biophys. Acta 666: 411.PubMedCrossRefGoogle Scholar
  121. Krygier-Brevart, V., Zabrenetsky, V. S., and Spencer, P. S., 1977, Cyclic AMP stimulation of a peripheral myelin protein kinase, Trans. Am. Soc. Neurochem. 8: 262.Google Scholar
  122. Laatsch, R. H., 1962, Glycerol phosphate dehydrogenase activity of developing rat central nervous system, J. Neurochem. 14: 1167.Google Scholar
  123. Lajtha, A., “Toth, J., Fujimoto, K., and Agrawal, H. C., 1977, Turnover of myelin proteins in mouse brain in vivo, Biochem. J. 164: 323.Google Scholar
  124. Latovitzki, N., and Silberberg, D. H., 1975, Ceramide galactosyl-transferase in cultured rat cerebellum: Changes with age, with demyelination, and with inhibition of myelination by 5-bromo-2’deoxyuridine or experimental allergic encephalomyelitis serum, J. Neurochem. 24: 1017.PubMedCrossRefGoogle Scholar
  125. Latovitzki, N., and Silberberg, D. H., 1977, UDP-galactose ceramide galactosyltransferase and 2’,3’-cyclic nucleotide 3’-phosphohydrolase activities in cultured newborn rat cerebellum: Association with myelination and concurrent susceptibility to 5-bromodeoxyuridine, J. Neurochem. 29: 611.PubMedCrossRefGoogle Scholar
  126. Lees, M. B., and Chan, D. S., 1975, Proteolytic digestion of bovine white matter proteolipid, J. Neurochem. 25: 585.Google Scholar
  127. Lim, L., White, J. O., Hall, C., Berthold, W., and Davison, A. N., 1974, Isolation of microsomal poly (A) RNA from rat brain directing the synthesis of the encephalitogenie protein in Xenopus oocytes, Biochim. Biophys. Acta 318: 313.Google Scholar
  128. Linington, C., and Waehneldt, T. V., 1981, The in vivo synthesis of myelin proteins in rabbit sciatic nerve, Neurochem. Int. 3: 385.PubMedCrossRefGoogle Scholar
  129. Linington, C., Waehneldt, T. V., and Neuhoff, V., 1980, “I’hc lipid composition of light and heavy myelin subfractions isolated from rabbit sciatic nerve, Neurosci. Lett. 20: 211.Google Scholar
  130. Lisak, R. P., Pleasure, D. F., Silherberg, D. H., Manning, M. C., and Saida, T., 1981, Long term culture of bovine oligodendroglia isolated with a Percoll gradient, Brain Res. 223: I07.CrossRefGoogle Scholar
  131. London, Y., and Vossenberg, F. G. A., 1973, Specific interactions of central nervous system myelin basic proteins with lipids: Specific regions of the protein sequence protected from the proteolytic action of trypsin, Biochim. Biophys. Acta 307: 478.PubMedCrossRefGoogle Scholar
  132. Mack, S. R., and Szuchet, S., 1981, Synthesis of myelin glycosphingolipids by isolated oligodendrocytes in tissue culture, Brain Res. 214: 180.PubMedCrossRefGoogle Scholar
  133. Macklin, W. B., and Pfeiffer, S. E., 1983, Myelin proteolipid time courses in primary cultures of fetal rat brain, Trans. Am. Soc. Neurochem. 14: 212.Google Scholar
  134. Martenson, R. E., 1980, Myelin basic protein, What does it do?, in: Biochemistry of Brain ( S. Kumar, ed.), pp. 49–79, Pergamon Press, Oxford.Google Scholar
  135. Matt hees, J., and Campagnoni, A. T., 1980, Cell-free synthesis of the myelin basic proteins in a wheat germ system programmed with brain messenger RNA, J. Neurochem. 35: 867.PubMedCrossRefGoogle Scholar
  136. Matthieu, J.-M., Quarks, R. 11., Brady, R. O., and Webster, H. de F., 1973, Variation of proteins, enzyme markers and gangliosides in myelin suhfractions, Biochim. Biophys. Acta 329: 305.Google Scholar
  137. Matthieu, J.-M., Quarles, R. H., Poduslo, J. F., and Brady, R. O. 1975a, [s5S]Sulfate incorporation into myelin glycoproteins. I. Central nervous system, Biochim. Biophys. Arta 392: 159.Google Scholar
  138. Matthieu, J.-M., Everly, J. L., Brady, R. O., and Quarles, R. H., 1975b, [35S]Sulfate incorporation into myelin glycoproteins. II. Peripheral nervous system, Bioc{rim Biophys. Acta 392: 167.Google Scholar
  139. Matthieu, J.-M., Honegger, P., Trapp, B. D., Cohen, S. R., and Webster, H. de F., 1978a, Myelination in rat brain aggregating cell cultures, Neuroscience 3: 565.PubMedCrossRefGoogle Scholar
  140. Matthieu, J.-M., Webster, H. de F., De Vries, G. H., Corthay, S., and Koellreutter, B., 1978b, Glial versus neuronal origin of myelin proteins and glycoproteins studied by combined intraocular and intracranial labeling, J. Neurochem. 31: 93.PubMedCrossRefGoogle Scholar
  141. Matthieu, J.-M., Waehneldt, T. V., Webster, H. de F., Beny, M., and Fagg, G. E., 1979, Distribution of PNS myelin proteins and membrane enzymes in fractions isolated by continuous zonal gradient centrifugation, Brain Res. 170: 123.PubMedCrossRefGoogle Scholar
  142. Matthieu, J.-M., Honegger, P., Favrod, P., Gautier, E., and Dolivo, M., 1979, Biochemical characterization of a myelin fraction isolated from rat brain aggregating cell structures, J. Neurochem. 32: 869.PubMedCrossRefGoogle Scholar
  143. McCaman, R. E., and Cook, K., 1966, Intermediary metabolism of phospholipids in brain tissue. III. Phosphocholine-glyceride transferase, J. Biol. Chem. 241: 3390.PubMedGoogle Scholar
  144. McCarthy, K. D., and deVellis, J., 1980, Preparation of separate astrogltal and oligodendroglial cell cultures from rat cerebral tissue, J. Cell Biol. 85: 890.PubMedCrossRefGoogle Scholar
  145. McKhann, G. M., and Ho, W., 1967, The in vivo and in vitro synthesis of sulfatides during development, J. Neurochem. 14: 717.PubMedCrossRefGoogle Scholar
  146. McNamara, J. O., and Appel, S. H., 1977, Myelin basic protein phosphatase activity in rat brain, J. Neurochem. 29: 27.PubMedCrossRefGoogle Scholar
  147. Mertz, R. J., and Radin, N.S., 1982, Purification and properties of a cerebroside transfer protein, J. Biol. Chem. 257: 1 2901.Google Scholar
  148. Mickel, H. S., and Gilles, E. 1–1., 1970, Changes in glial cells during human telencephalic myelinogenesis, Brain Res. 93: 337.Google Scholar
  149. Miller, E. K., and Dawson, R. M. C., 1972, Exchange of phospholipids between brain membranes in vitro, Biochem. J. 126: 823.PubMedGoogle Scholar
  150. Miller, S. L., and Morell, P., 1978, Turnover of phosphatidycholine in microsomes and myelin in brains of young and adult rats, J. Neurochem. 31: 771.PubMedCrossRefGoogle Scholar
  151. Miller, S. I., Benjamins, J. A., and Morell, P., 1977, Metabolism of glycerophospholipids of myelin and microsomes in rat brain: Reutilization of precursors, J. Biol. Chem. 252: 4025.PubMedGoogle Scholar
  152. Mirsky, R., Winter, J., Abney, E. R., Pruss, R. M., Gavrilovic, J., and Raff, M. C., 1980, Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture, J. Cell Biol. 84: 483.PubMedCrossRefGoogle Scholar
  153. Mithen, F. A., Wood, P. M., Agrawal, H. C., and Bunge, R. P., 1983, Immunohistochemical study of myelin sheaths formed by oligodendrocytes interacting with dissociated dorsal root ganglion neurons in culture, Brain Res. 262: 63.PubMedCrossRefGoogle Scholar
  154. Miyake, M., 1975, Methylases of myelin basic protein and histone in rat brain, J. Neurochem. 24: 909.PubMedCrossRefGoogle Scholar
  155. Miyamoto, E., 1975, Protein kinases in myelin of rat brain: Solubilization and characterization, J. Neurochem. 24: 503.PubMedCrossRefGoogle Scholar
  156. Morell, P., and Radin, N. S., 1970, Specificity in ceramide biosynthesis from long chain bases and various fatty acyl coenzyme A’s by brain microsomes, J. Biol. Chem. 245: 342.PubMedGoogle Scholar
  157. Morell, P., and Toews, A. D., 1984, In vivo metabolism of oligodendroglial lipids, in: Advances in Neurochemistry,Vol. 5, Oligodendroglia (W. T. Norton, ed.), Chapter 2, Plenum Press, New York (in press).Google Scholar
  158. Moser, H. W., and Karnovsky, M. I., 1959, Studies on the biosynthesis of glycolipides and other lipides of brain, J. Biol. Chem. 234: 1990.Google Scholar
  159. Murray, M. R., 1965, Nervous tissue in vitro, in: Cells and Tissues in Culture (E. N. Willmer, ed.), pp. 373–455, Academic Press, New York.Google Scholar
  160. Neskovic, N. M., Sarlieve, L. L., and Mandel, P., 1972. Biosynthesis of glycolipids in myelin deficient mutants: Brain glycosyl transferases in jimpy and quaking mice, Brain Res. 42: 147.PubMedCrossRefGoogle Scholar
  161. Neskovic, N. M., Sarlieve, L. L., and Mandel, P., 1973, Subccllular and submicrosomal distribution of glycolipid-synthesizing transferases in jimpy and quaking mice, J. Neurochem. 20: 1419.PubMedCrossRefGoogle Scholar
  162. Norton. W. T., 1982, Recent advances in the neurobiology of oligodendroglia, in: Advances in Cellular Neurobiology, Vol. 4 (S. Fedoroff and L. Hertz, eds.) Academic Press, New York.Google Scholar
  163. Pasquini, J. M., Gomez, C. J., Najle, R., and Soto, E. F., 1975, Lack of phospholipid transport mechanism in cell membranes of the CNS, J. Neurochem. 24: 439.PubMedCrossRefGoogle Scholar
  164. Patsalos, P. N., Bell, M. E., and Wiggins, R. C., 1980, Pattern of myelin breakdown during sciatic nerve Wallerian degeneration: Reversal of order of assembly, J. Cell Biol. 87: 1.PubMedCrossRefGoogle Scholar
  165. Pellkofer, R., and Jatzkewitz, II., 1976, Alteration of myelin biosynthesis in slices of rabbit spinal cord by antiserum to myelin basic protein and by puromycin, J. Neurochem. 27: 351.PubMedCrossRefGoogle Scholar
  166. Pereyra, P. M., and Braun, P. E., 1983, Studies on subcellular fractions which are involved in myelin assembly: Isolation from developing mouse brain, and characterization by enzyme markers, electron microscopy, and electrophoresis, J. Neurochem. 41: 957–973.PubMedCrossRefGoogle Scholar
  167. Pereyra, P. M., Braun, P. E., Greenfield, S., and Hogan, E. L., 1983, Studies on subcellular fractions which are involved in myelin assembly: Labeling of myelin proteins by a double radioisotope approach indicates developmental relationships, J. Neurochem. 41: 974–988.PubMedCrossRefGoogle Scholar
  168. Pfeiffer, S. E., 1984, Oligodendrocyte Development in Culture Systems in: Advances in Neurochemistry, Vol. 5, Oligodendroglia (W. Norton, ed.), Chapter 7, Plenum Press, New York.Google Scholar
  169. Pfeiffer, S. E., Barbarese, E., and Bhat, S., 1981, Non-coordinate regulation of myelinogenic parameters in primary cultures of dissociated fetal rat brain, J. Neurosci. Res. 6: 369.PubMedCrossRefGoogle Scholar
  170. Pleasure, D., and Kim, S. U., 1976, Enzyme markers for myelination of mouse cerebellum in vivo and in tissue culture, Brain Res. 104: 193.PubMedCrossRefGoogle Scholar
  171. Pleasure, D., Abramsky, O., Silberberg, D., Quinn, B., Parris, J., and Saida, T., 1977, Lipid synthesis by an oligodendroglial fraction in suspension culture, Brain Res. 134: 377.PubMedCrossRefGoogle Scholar
  172. Pleasure, D., Lichtman, C., Eastman, S., Lieb, M., Abramsky, O., and Silberberg, D., 1979, Acetoacetate and D-(-)beta-hydroxybutyrate as precursors for sterol synthesis by calf oligodendrocytes in culture: Extra-mitochondrial pathway for acetoacetate metabolism, J. Neurochem. 32: 1447.PubMedCrossRefGoogle Scholar
  173. Pleasure, D., Hardy, M., Johnson, C;., Lisak, R., and Silberberg, D., 1981, Oligodendroglial glycerophospholipid synthesis: Incorporation of radioactive precursors into ethanolamine glycerophospholipids by calf oligodendroglia prepared by a Percoll gradient and maintained in suspension culture, J. Neurochem. 37: 452.Google Scholar
  174. Poduslo, J. F., 1981, Developmental regulation of the carbohydrate composition of glycoproteins associated with central nervous system myelin, J. Neurochem. 36: 1924.PubMedCrossRefGoogle Scholar
  175. Poduslo, S. E., and Norton, W. T., 1972, Isolation and some chemical properties of oligodendroglia from calf brain, J. Neurochem. 19: 727.PubMedCrossRefGoogle Scholar
  176. Poduslo, S. E., Miller, K., and McKhann, G. M., 1978, Metabolic properties of maintained oligodendroglia purified from brain, J. Biol. Chem. 253: 1592.PubMedGoogle Scholar
  177. Porcellati, G., Biasion, M. G., and Pirotta, M., 1970, The labeling of brain ethanolamine phosphoglycer ides front cytidine diphosphate ethanolamine in vitro, Lipids 5: 734.CrossRefGoogle Scholar
  178. Possmayer, F., Meiners, B., and Mudd, J. B., 1973, Regulation by cytidine nucleotides of the acylation of sn-[°C]glycerol 3-phosphate: Regional and subcellular distribution of the enzymes responsible for phosphatidic acid synthesis central nervous system of rat, Biochem. J. 132: 381.PubMedGoogle Scholar
  179. Pruss, R. M., Bartlett, P. F., Gavrilovic, J., Lisak, R. P., and Rattray, S., 1981, Mitogens for glial cells: A comparison of the response of cultured astrocytes, oligodendrocytes and Schwann cells, Dev. Brain Res. 2: 19.CrossRefGoogle Scholar
  180. Quarles, R. H., 1980a, Glycoproteins from central and peripheral myelin, in: Myelin: Chemistry and Biology (G. A. Hashim, cd.), pp. 55–77, Alan R. Liss, New York.Google Scholar
  181. Quarles, R. H., 1980b, The biochemical and morphological heterogeneity of myelin and myelin-related membranes, in: Biochemistry of Brain ( S. Kumar, ed.), pp. 81–102, Pergamon Press, Oxford.Google Scholar
  182. Quarles, R. H., Everly, J. L., and Brady, R. O., 1973a, Evidence for the association of a glycoprotein with myelin in rat brain, J. Neurochem. 21: 1177.PubMedCrossRefGoogle Scholar
  183. Quarks, R. II., Everly, J. L., and Brady, R. O., 1973b, Myelin associated glycoprotein: a developmental change, Brain Res. 58: 506.CrossRefGoogle Scholar
  184. Raine, C. S., Johnson, A. B., Marcus, D. M., Suzuki, A., and Bornstein, M. B., 1981, Demyelination in vitro: Absorption studies demonstrate that galactocerebroside is a major target, J. Neurol. Sei. 52: 117.CrossRefGoogle Scholar
  185. Ramachandran, C. K., and Shah, S. N., 1977, Studies on mevalonate kinase, phosphomevalonate kinase, and pyrophosphomevalonate decarboxylase in developing rat brain, J. Neurochem. 28: 751.PubMedCrossRefGoogle Scholar
  186. Rambourg, A., and Droz, B., 1980, Smooth endoplasmic reticulum and axonal transport, J. Neurochem. 35: 16.PubMedCrossRefGoogle Scholar
  187. Rapaport, R. N., and Benjamins, J. A., 1981, Kinetics of entry of Po protein into peripheral nerve myelin, J. Neurochem. 37: 164.PubMedCrossRefGoogle Scholar
  188. Rapaport, R. N., Benjamins, J. A., and Skoff, R. P., 1982, Effects of monensin on assembly of PO protein into peripheral nerve myelin, J. Neurochem. 39: 1101.PubMedCrossRefGoogle Scholar
  189. Rawlins, F. A., 1973, A time-sequence autoradiographic study of the in vivo incorporation of [1,23H]cholesterol into peripheral nerve myelin, J. Cell Biol. 58: 42.PubMedCrossRefGoogle Scholar
  190. Rawlins, F. A., and Smith, M. E., 1971, Myelin synthesis in vitro: A comparative study of central and peripheral nervous tissue, J. Neurochem. 18: 1861.PubMedCrossRefGoogle Scholar
  191. Rawlins, F. A., Hedley-Whyte, E. T., Villegas, G. M., and Uzman, B. G., 1970, Reutilization of cholesterol-1,2–3H in the regeneration of peripheral nerve: An autoradiographic study, Lab. Invest. 22: 237.PubMedGoogle Scholar
  192. Roach, A. Boylan, K., Horvath, S., Prusiner, S. B., and Hood, L. E., 1983, Characterization of cloned cDNA representing rat myelin basic protein: Absence of expression in brains of shiverer mutant mice, Cell 34: 799.Google Scholar
  193. Roomi, M. W., and Eylar, E. H., 1978, Isolation of a product from trypsin-digested glycoprotein of sciatic nerve myelin, Biochim. Biophys. Acta 536: 122.PubMedCrossRefGoogle Scholar
  194. Sabri, M. I., Bone, A. H., and Davison, A. N., 1974, Turnover of myelin and other structural proteins in developing rat brain, Biochenz. J. 142: 499.Google Scholar
  195. Solway, J. G., Harwood, J. L., Kai, M., White, G. L., and Hawthorne, J. N., 1968, Enzymes of phosphoinositide metabolism during rat brain development, J. Neurochem. 15: 221.CrossRefGoogle Scholar
  196. Sammeck, R., Martenson, R. E., and Brady, R. O., 1971, Studies of the metabolism of myelin basic proteins in various regions of the central nervous system, Brain Res. 34: 241.PubMedCrossRefGoogle Scholar
  197. Sato, S., Quarles, R. H., and Brady, R. 0., 1982, Susceptibility of the myelin-associated glycoprotein and basic protein to a neutral protease in highly purified myelin from human and rat brain, J. Neurochem. 39: 97.Google Scholar
  198. Schlesinger, M. J., 1981, Proteolipids, Annu. Rev. Biochenz. 50: 193.CrossRefGoogle Scholar
  199. Seil, F. J., and Agrawal, H. C., 1980, Myelin proteolipid protein does not induce demyelinating or myelination-inhibition antibodies, Brain Res. 194: 273.PubMedCrossRefGoogle Scholar
  200. Seil, F. J., Falk, G. A., Kies, M. W., and Alvord, E. C., 1968, In vitro demyelinating activity of sera from guinea pigs sensitized with whole CNS and MBP, Exp. Neural. 22: 545.Google Scholar
  201. Serougne, C., Lefevre, C., and Chevalier, F. 1976, Cholesterol transfer between brain and plasma in the rat: A model for turnover of cerebral cholesterol, Exp. Neural. 51: 229.CrossRefGoogle Scholar
  202. Shah, S. N., 1971, Glycosyl transferases of rnicrosomal fractions from brain: Synthesis of glucosyl ceramide and galactosyl ceramide during development and the distribution of glucose and galactose transferase in white and grey matter, J. Neurochem. 18: 395.PubMedCrossRefGoogle Scholar
  203. Shah, S. N., 1981, Modulation in vitro of 3-hydroxy-3 methyglutaryl coenzyme A reductose in brain microsomes: Evidence for the phosphorylation and dephosphorylation associated with inactivation and activation of the enzyme, Arch. Biochim. Biophys. 211: 439.CrossRefGoogle Scholar
  204. Shapira, R., Wilhelmi, M. R., and Kibler, R. F., 1981, Turnover of myelin proteins of rat brain, determined in fractions separated by sedimentation in a continuous sucrose gradient, J. Neurochem. 36: 1427.PubMedCrossRefGoogle Scholar
  205. Sheppard, J. R., Brus, D., and Wehner, J. M., 1978, Brain reaggregate cultures: Biochemical evidence for myelin membrane synthesis, J. Neurobiol. 9: 309.PubMedCrossRefGoogle Scholar
  206. Shoyama, Y., and Kishimoto, Y., 1978, In vivo metabolism of 3-ketoceramide in rat brain, J. Neurochem. 30: 377.Google Scholar
  207. Siegrist, H. P., Burkart, T., Wiesmann, U. N., Herschkowitz, N. N., and Spycher, M. A., 1979, Ceramidegalactosyl transferase and cerebroside-sulfotransferase localization in Golgi membranes isolated by a discontinuous sucrose gradient of mouse brain microsomes, J. Neurochem. 33: 497.PubMedCrossRefGoogle Scholar
  208. Silberberg, I). H., Benjamins, J., Herschkowitz, N., and McKhann, G. M., 1972, Incorporation of radioactive sulphate into sulphatide during myelination on cultures of rat cerebellum, J. Neurochem. 19: 11.PubMedCrossRefGoogle Scholar
  209. Singh, H., and Jungalwala, F. B., 1979, The turnover of myelin proteins in adult rat brain Int. J. Neurosci. 9:123.Google Scholar
  210. Singh, H., and Spritz, N., 1976, Polypeptide components of myelin from rat peripheral nerve Biochim. Biophys. Acta 448:325.Google Scholar
  211. Small, D. H., and Carnegie, P. R., 1982 In vivo methylation of an arginine in chicken myelin basic protein, J. Neurochem. 38:184–190.Google Scholar
  212. Smith, M. E., 1967, The metabolism of myelin lipids, Adz,. Lipid Res. 5: 241.Google Scholar
  213. Smith, M. E., 1968, The turnover of myelin in the adult rat, Biochim. Biophys. Acta 164: 285.PubMedCrossRefGoogle Scholar
  214. Smith, M. E., 1969, An in vitro system for the study of myelin synthesis, J. Neurochem. 16:83. Smith, M. E., 1972, The turnover of myelin proteins, Neurobiology 2: 35.Google Scholar
  215. Smith, M. E., 1973, A regional survey of myelin development: Some compositional and metabolic aspects, J. Lipid Res. 14: 541.PubMedGoogle Scholar
  216. Smith, M. E., 1977, The role of proteolytic enzymes in demyelination in experimental allergic encephalomyelitis, Neurochem. Res. 2: 233.CrossRefGoogle Scholar
  217. Smith, M. E., 1980a, Proteolyticenzynres in demyelination, in: Progress in Clinical Biological Research, Vol. 39 Neurochemistry and Clinical Neurology ( L. Battistin, G. Hashim, and A. Lajtha, eds.), pp. 1–10, Alan R. Liss, New York.Google Scholar
  218. Smith, M. E., 19806, Biosynthesis of peripheral nervous system tnyelin proteins in vitro, J. Neurochem. 35: 1183.Google Scholar
  219. Smith, M. E., 1983, Peripheral nervous system myelin: Properties and metabolism, in: Handbook of Neurochemistry, Vol. 3 ( A. Lajtha, ed.), pp. 201–223, Plenum Press, New York.Google Scholar
  220. Smith, M. E., and Eng, L., 1965, The turnover of the lipid components of myelin, J. Am. Oil. Chem. Soc. 42: 1013.Google Scholar
  221. Smith, M. E., and Hasinoff, C. M., 1971, Biosynthesis of myelin proteins in vitro, J. Neurochem. 18: 739.PubMedCrossRefGoogle Scholar
  222. Smith, M. E., and Sternberger, N. H., 1982, Glycoprotein biosynthesis in peripheral nervous system myelin: Effect of tunicamycin, J. Neurochem. 38: 1044.PubMedCrossRefGoogle Scholar
  223. Sprinkle, T. J., and Sheedlo, H. J., 1983, Species cross-reactivity of an oligodendrocyte-Schwann cell antigen, Trans. Am. Soc. Neurochem. 14: 211.Google Scholar
  224. Sternberger, N. H., Itoyama, Y., Kies, M. W., and Webster, H. de F., 1978a, Myelin basic protein demonstrated immunocytochemically in oligodendroglia prior to myelin sheath formation, Proc. Natl. Acad. Sci. U.S.A. 5: 2521.CrossRefGoogle Scholar
  225. Sternberger, N. H., Itoyama, Y., Kies, M. W., and Webster, H. de F., 1978b, Immunocytochemical method to identify basic protein in myelin-forming oligodendrocytes of newborn rat C.N.S., J. Neurocytol. 7: 251.PubMedCrossRefGoogle Scholar
  226. Sternberger, N. H., Quarles, R. H., Itoyama, Y., and Webster, H. de F., 1979, Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of-developing rat, Proc. Natl. Acad. Sci. U.S.A. 76: 1510.PubMedCrossRefGoogle Scholar
  227. Stoffel, W., Hillen, H., Schröder, W., and Deutzmann, R., 1983, The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein), Hoppe-Seyler’s Z., Phy.siol. Chem. 364: 1155.Google Scholar
  228. Stoffyn, A., Stoffyn, P., Farooq, M., Snyder D. S., and Norton, W. ‘F., 1981, Sialosyltransferase activity and specificity in the biosynthesis in vitro of sialosylgalactosylceramide (Gy.t) and sialosylactosylceramide (G 13) by rat astrocytes, neuronal perikarya and oligodendroglia, Neurochem. Res. 6: 1149.Google Scholar
  229. Stoffyn, P., and Folch-Pi, J., 1971, On the type of linkage binding fatty acids present in brain white matter proteolipid apoprotein, Biochern. Biophys. Res. Commun. 44: 157.Google Scholar
  230. Stoner, G. L., 1983, Proposed role for phosphorylation in the folding of myelin basic protein, Trans. Am. Soc. Neurochem. 14: 164.Google Scholar
  231. Sulakhe, P. V., Petrali, E. H., Davis, E. V., and Thiessen, B. J., 1980, Calcium ion stimulated endogenous protein kinase catalyzed phosphorylation of basic proteins in myelin subtractions and myelin-like membrane fractions from rat brain, Biochemistry 19: 5363.PubMedCrossRefGoogle Scholar
  232. Sun, G. Y., and Horrocks, L. A., 1973, Metabolism of palmitic acid in the subcellular fractions of rat brain. J. Lipid Res. 14: 206.PubMedGoogle Scholar
  233. Szuchet, K., 1980, Myelin-associated enzymes, in: Neurological Mutations Affecting Illyelination (N. Baumann, ed.), INSERM Symposium No. 14, pp. 333–347, Elsevier/North-Holland, Amsterdam.Google Scholar
  234. Tennekoon, G., Zaruba, M., and Wolinsky, J., 1983, Topography of cerebrosidc sulfotrarsfeease in Golgi enriched vesicles from rat brain, J. Cell Biol. 97: 1107.PubMedCrossRefGoogle Scholar
  235. Toews, A. P., Horrocks, L. A., and King, J. S., 1976, Simultaneous isolation of purified micro.soma1 and myelin fractions from rat spinal cord, J. Neurochem. 27: 25.PubMedCrossRefGoogle Scholar
  236. Townsend, L. E., and Benjamins, J. A., 1979, Protein synthesis by free and membrane bound polysomes front brainstem, Trans. Am. Soc. Neurochem. 11: 157.Google Scholar
  237. Townsend, L. E., and Benjamins, J. A., 1984, The effects of monensin and colchicine on myelin galactolipids, J. Neurochem.,in press.Google Scholar
  238. Townsend, L. E., and Benjamins, J. A., 1983a, The effects of monensin on post-translational processing of myelin proteins, J. Neurochem. 40: 1333.PubMedCrossRefGoogle Scholar
  239. Townsend, L. E., and Benjamins, J. A., 1983b, Pulse-chase studies on entry of proteolipid protein into myelin, Trans. Am. Soc. Neurochem. 14: 213.Google Scholar
  240. Townsend, L. E., Agrawal, D., Benjamins, J. A., and Agrawal, II. C., 1982, Acylation of myelin proteolipid protein in vitro, J. Biol. Chem. 257: 9745.PubMedGoogle Scholar
  241. Trapp, B. D., Webster, H. De F., Johnson, D., Quarles, R. H., Cohen, S. R., and Murray, M. R., 1982, Myelin formation in rotation-mediated aggregating cell cultures: Immunocytochemical, electron microscopic and biochemical observations, J. Neurosci. 2: 986.PubMedGoogle Scholar
  242. Turner, R., Jen Chou, C.-H., Kibler, R. F., and Kuo, J. F., 1982, Basic protein in myelin is phosphorylated by endogenous phospholipid-sensitive Ca“-dependent protein kinase, J. Neurochem. 39: 1397.CrossRefGoogle Scholar
  243. Van den Berg, C. J., 1974, Enzymes of the developing brain, in: Biochemistry of the Developing Brain, Vol. 2 ( W. Himwich, ed.), pp. 149–198, Marcel Dekker, New York.Google Scholar
  244. Waehneldt, T. V., and Linington, C., 1980, Organization and assembly of the myelin membrane, in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), INSERM Symposium No. 14, pp. 389–412, Elsevier/North-Holland, Amsterdam.Google Scholar
  245. Waehneldt, T. V., and Mandel P., 1972, Isolation of rat brain myelin, monitored by polyacrylamide gel electrophoresis of dodecyl sulfate-extracted proteins, Brain Res. 40: 419.PubMedCrossRefGoogle Scholar
  246. Walters, S. N., and Morell, P., 1981, Effects of altered thyroid state on myelinogenesis, J. Neurochem. 36: 1792.PubMedCrossRefGoogle Scholar
  247. Wells, M. A., and Dittmer, J. C., 1967, A comprehensive study of the postnatal changes in the concentration of the lipids of developing rat brain, Biochemistry 6: 3169.PubMedCrossRefGoogle Scholar
  248. Wenger, D. A., Petitpas, J. W., and Pieringer, R. A., 1968, The metabolism of glyceride glycolipids. II. Biosynthesis of monogalactosyl diglyceride, Biochemistry 7: 3700.PubMedCrossRefGoogle Scholar
  249. Wenger, D. A., Subba Rao, K., and Pieringer, R. A., 1970, The metabolism of glyceride glycolipids. III. Biosynthesis of galactosyl diglyceride by galactosyl transferase pathways in brain, J. Biol. Chem. 245: 2513.PubMedGoogle Scholar
  250. Wiggins, R. C., and Morell, P., 1980, Phosphorylation and fucosylation of myelin protein in vitro by sciatic nerve front developing rat, J. Neurochem. 34: 627.PubMedCrossRefGoogle Scholar
  251. Wood, J. N., and King, N., 1971, Turnover of basic protein of rat brain, Nature (London) 229: 56.CrossRefGoogle Scholar
  252. Wood, P., Okada, E., and Bunge, R., 1980, The use of networks of dissociated rat dorsal ganglion neurons to induce myelination by oligodendrocytes in culture, Brain Res. 196: 247.PubMedCrossRefGoogle Scholar
  253. Wu, P.-S., and Ledeen, R. W., 1980, Evidence for the presence of CDP-ethanolamine:1,2-diacyl-sn-glycerol ethanolarninephosphotransferase in rat central nervous system myelin, J. Neurochem. 35: 659.PubMedCrossRefGoogle Scholar
  254. Yahara, S., Singh, I., and Kishimoto, Y., 1980, Cerebroside and cerebroside III-sulfate in brain cytosol: Evidence for their involvement in myelin assembly, Biochim. Biophys. Acta 619: 177.PubMedCrossRefGoogle Scholar
  255. Yu, Y. T., and Campagnoni, A. T., 1982, In vitro synthesis of the four myelin basic proteins: Evidence for the lack of a metabolic relationship, J. Neurochem. 39: 1559.PubMedCrossRefGoogle Scholar
  256. Zeller, N. K., Hunkeler, M. J., Campagnoni, A. T., Sprague, J., and Lazzarini, R. A., 1983, Characterization of mouse myelin basic protein messenger RNAs with a myelin basic protein cDNA clone, Proc. Natl. Acad. Sei. U.S.A., 81: 18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Joyce A. Benjamins
    • 1
  • Marion E. Smith
    • 2
  1. 1.Department of NeurologySchool of Medicine Wayne State UniversityDetroitUSA
  2. 2.Department of NeurologyVeterans Administration Medical CenterPalo AltoUSA

Personalised recommendations