Skip to main content

Physiological Basis of Conduction in Myelinated Nerve Fibers

  • Chapter
Myelin

Abstract

Speculating in his Leçons sur l’Histologie du Système Nerveux on the physiological function of myelin and nodes in conduction in myelinated nerve, Ranvier (1878) concluded that the myelin sheath, because of its lipid makeup, would protect the axon cylinder against compression. While this conclusion does not play a prominent part in current thinking, his second conclusion does—namely, that the myelin might serve as a nonconducting envelope to surround the conducting axon and insulate it electrically from the external conducting medium. Referring to the analogy between conduction in a myelinated nerve and conduction in a marine telegraph cable, Ranvier wrote:

But what is the role of the myelin sheath itself? It clearly has a protective role; it preserves the axis-cylinder from compression. As it is liquid, or almost liquid, pressures exerted on it are transmitted in every direction and are thus distributed over many points, so that their constrictive action on the axis-cylinder is much reduced. The myelin has also perhaps another role; it is probably an insulating sheath. One knows that electric wires that are immersed in a conducting medium must be insulated from this medium by a nonconducting sheath; it is on this principle that the construction of submarine cables rests. It would be possible—certain facts lead one to believe—that the transmission of sensory or motor impulses has some analogy with the transmission of electricity, and maybe it is convenient that each nerve tube is insulated so that this transmission is more effective. I do not say, I wish you to note, that this insulating myelin sheath is necessary for the transmission of impulses, since we will see to the contrary, in the next lesson, that this transmission is achieved equally well by nerve fibers that lack myelin; nevertheless, I think that this insulation serves to make it more perfect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. J., and Gage, P. W., 1976, Gating currents associated with sodium and calcium current in Aplysia neuron,.Science 192: 783.

    CAS  Google Scholar 

  • Almers, W., 1978, Gating currents and charge movements in excitable membranes, Reis. Physiol. Biocllena. Pharmacol. 82: 96.

    Article  CAS  Google Scholar 

  • Armstrong, C. M., and Bezanilla, F., 1974, Charge movement associated with the opening and closing of the activation gates of the Na channels, J. Gen. Physiol. 63: 533.

    Article  PubMed  CAS  Google Scholar 

  • Binah, O., and Palti, Y., 1981, Potassium channels in the nodal membrane of rat myelinated fibres, Nature (London) 290: 598.

    Article  CAS  Google Scholar 

  • Bostock, H., and Sear, T. A., 1978, The internodal axon membrane: Electrical excitability and continuous conduction in segmental demyelination, J. Physiol. (London) 313: 301.

    Google Scholar 

  • Bostock, H., Sears, T. A., and Sherratt, R. M., 1981; The effects of 4-aminopyridine and tetraethyl- ammonium ions on normal and demyelinated nerve fibres, J. Physiol. (London) 313: 301.

    CAS  Google Scholar 

  • Brill, M. S., Waxman, S. G., Moore, J. W., and Joyner, R. W., 1977, Conduction velocity and spike configuration in myelinated fibres: Computed dependence on internode distance, J. Neurol. Neurosurg. Psychiatry 40: 769

    Article  PubMed  CAS  Google Scholar 

  • Brismar, T., 1979, Potential clamp analysis on myelinated nerve fibers from alloxan diabetic rats, Acta Physiol. Scand. 105: 384.

    Article  PubMed  CAS  Google Scholar 

  • Brismar, T., 1980, Potential clamp analysis of membrane currents in rat myelinated nerve fibres, J. Physiol. (London) 298: 171.

    CAS  Google Scholar 

  • Chiu, S. Y., 1980, Asymmetry currents in mammalian myelinated nerve, J. Physiol. (London) 309:499. Chiu, S. Y., 1982, Resting potential of a frog myelinated axon: The role of the internode, Soc. Neuroscience Abstr. 8: 253.

    Google Scholar 

  • Chiu, S. Y., and Ritchie, J. M., 1980, Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibres, Nature (London) 284: 170.

    Article  CAS  Google Scholar 

  • Chiu, S. Y., and Ritchie, J. M., 1981, Evidence for the presence of potassium channels in the internodal region of acutely demyelinated mammalian single nerve fibres, J. Physiol. (London) 313: 415.

    CAS  Google Scholar 

  • Chiu, S. Y., and Ritchie, J. M., 1982, Evidence for the presence of potassium channels in the internode of frog myelinated nerve fibres, J. Physiol. (London) 322: 485.

    CAS  Google Scholar 

  • Chin, S. Y., and Ritchie, J. M., 1984, On the physiological role of internodal potassium channels and the security of conduction in myelinated nerve fibres. Proc. R. Soc. (London) B. (in press).

    Google Scholar 

  • Chiu, S. Y., Mrose, H. E., and Ritchie, J. M., 1979a, Anomalous temperature dependence of the sodium conductance in rabbit nerve compared with frog nerve, Nature (London) 279: 327.

    Article  CAS  Google Scholar 

  • Chiu, S. Y., Ritchie, J. M., Rogart, R. B., and Stagg, D., 1979b, A quantitative description of membrane currents in rabbit myelinated nerve, J. Physiol. (London) 292: 149.

    CAS  Google Scholar 

  • Conti, F., Hille, B., Neumcke, B., Nonner, W., and Stämpfli, R., 1976, Measurement of the conductance of the sodium channels from current fluctuations at the node of Ranvier, J. Physiol. (London) 262: 699.

    CAS  Google Scholar 

  • Cragg, B. G., and Thomas, P. K., 1964, The conduction velocity of regenerated peripheral nerve fibres, J. Physiol. (London) 171: 164.

    CAS  Google Scholar 

  • Dodge, F. A., 1963, A study of ionic permeability changes underlying excitation in myelinated nerve fibers in the frog, Thesis, The Rockefeller University, University Microfilm, Ann Arbor, Michigan (Number 0. 64–7333 ).

    Google Scholar 

  • Dodge, F. A., and Frankenhaeuser, B., 1958, Membrane currents in isolated frog nerve fibre under voltage clamp conditions, J. Physiol. (London) 143: 76.

    CAS  Google Scholar 

  • Dodge, F. A., and Frankenhaeuser, B., 1959, Sodium currents in the myelinated nerve fibre of Xenopus laevis investigated by the voltage clamp technique, J. Physiol. (London) 148: 188.

    CAS  Google Scholar 

  • Dubois, J. M., and Bergman, C., 1975, Potassium accumulation in the perinodal space of frog myelinated axons, Pfluegers Arch. 358: 111.

    Article  CAS  Google Scholar 

  • Fitzhugh, R., 1962, Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber, Biophys. J. 2: 11.

    Article  PubMed  CAS  Google Scholar 

  • Foster, R. E., Connors, B. W., and Waxman, S. G., 1982, Rat optic nerve: Electrophysiological, pharmacological, and anatomical studies during development, Der,. Brain Res. 3: 371.

    Article  Google Scholar 

  • Frankenhaeuser, B., 1957, A method for recording resting and action potentials in the isolatedmyelinated nerve fibre of the frog, J. Physiol. (London) 135: 550.

    CAS  Google Scholar 

  • Frankenhaeuser, B., 1959, Steady-state inactivation of sodium permeability in myelinated nerve fibers of Xenopus laevis, J. Physiol. (London) 148: 671.

    CAS  Google Scholar 

  • Frankenhaeuser, B., 1960a, Quantitative description of sodium currents in myelinated nerve fibres of Xenopus laevis, J. Physiol. (London) 151: 491.

    CAS  Google Scholar 

  • Frankenhaeuser, B., 1960b, Sodium permeability in toad nerve and in squid nerve, J. Physiol. (London) 152: 159.

    CAS  Google Scholar 

  • Frankenhaeuser, B., 1962a, Delayed currents in myelinated nerve fibres of Xenopus laevis investigated with voltage clamp technique, J. Physiol. (London) 160: 40.

    CAS  Google Scholar 

  • Frankenhaeuser, B., 1962b, Instantaneous potassium currents in myelinated nerve fibres of Xenopus laevis, J. Physiol. (London) 160: 46.

    CAS  Google Scholar 

  • Frankenhaeuser, B., 1962c, Potassium permeability in myelinated nerve fibres of Xenopus laevis, J. Physiol. (London) 160: 54.

    CAS  Google Scholar 

  • Frankenhaeuser, B., I963a, A quantitative description of potassium currents in myelinated nerve fibers of Xenopus laevis, J. Physiol. (London) 169: 424.

    Google Scholar 

  • Frankenhaeuser, B., 1963b, Activation of the sodium-carrying mechanism in myelinated fibres of Xenopus laevis, J. Physiol. (London) 169: 445.

    CAS  Google Scholar 

  • Frankenhaeuser, B., and Huxley, A. F., 1964, The action potential in the myelinated fibre of Xenopus laevis as computed on the basis of voltage clamp data, J. Physiol. (London) 171: 302.

    CAS  Google Scholar 

  • Frankenhaeuser, B., and Moore, L. E., 1963, The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres of Xenopus laevis, J. Physiol. (London) 169: 431.

    CAS  Google Scholar 

  • Frankenhaeuser, B., and Waltman, B., 1969, Membrane resistance and conduction velocity of large myelinated nerve fibres from Xenopus laevis, J. Physiol. (London) 148:677.

    Google Scholar 

  • Gasser, H. S., 1950, Unmedullated fibers originating in dorsal root ganglia, J. Gen. Physiol. 33: 651.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, D. E., 1943, Potential, impedance, rectification in membranes, J. Gen. Physiol. 27: 37.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, L., and Albus, J. S., 1968, Computation of impulse conduction in myelinated fibres: Theoretical basis of the velocity diameter relation, Biophys. J. 8:596.

    Google Scholar 

  • Gregson, N. A. 1976, The chemistry and structure of myelin, in: The Peripheral Nerve ( D. N. Landon, ed.), pp. 512–604, Wiley, New York.

    Google Scholar 

  • Hall, S. M., and Gregson, N. A., 1971, The in vivo and ultrastructural effects of injection of lysophophatidyl choline into myelinated peripheral nerve fibres of the adult mouse, J. cell. Sci. 9: 769.

    PubMed  CAS  Google Scholar 

  • Hardy, W. L., 1973, Propagation speed in myelinated nerve. II. Theoretical dependence on external Na’ and on temperature, Biophys. J. 13: 1071.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1970, Ionic channels in nerve membranes, Prog. Biophys. Mol. Biol. 21: 1.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1971, Voltage clamp studies on myelinated nerve fibers, in: Biophysics and Physiology of Excitable Membranes (W. J. Adelman, ed.), pp. 230–246, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Hille, B., 1976, Ionic basis of resting and action potentials, in: Handbook of the Nervous System, Vol. 1 (E. Kandel, ed.), Physiology, pp. 99–136.

    Google Scholar 

  • American Physiological Society, Bethesda, Maryland. Hirano, A., 1981, Structure of normal central myelinated fibers, Adv. Neurol. 31: 51.

    Google Scholar 

  • Hodgkin, A. L., 1964, The Conduction of the Nervous Impulse, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952a, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol. (London) 116: 449.

    CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952b, The components of membrane conductance in the giant axon of Loligo, J. Physiol. (London) 116: 473.

    CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952e, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, J. Physiol. (London) 116: 496.

    Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952d, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117:500.

    Google Scholar 

  • Hodgkin, A. L., and Katz, B., 1949, The effect of temperature on the electrical activity of the giant axon of the squid, J. Physiol. (London) 109:240.

    Google Scholar 

  • Horackova, M., Nonner, W., and Stämpfli, R., 1968, Action potentials and voltage clamp currents of single rat Ranvier nodes, Proc. Int. Union Physiol. Sci. 7: 198.

    Google Scholar 

  • Hursh, J. B., 1939, Conduction velocity and diameter of nerve fibers, Am. J. Physiol. 127: 131.

    Google Scholar 

  • Hutchinson, N. A., Koles, Z. J., and Smith, R. S., 1970, Conduction velocity in myelinated nerve fibres of Xenopus laevis, J. Physiol. (London) 208: 279.

    CAS  Google Scholar 

  • Huxley, A. F., 1959, Ionic movements during nerve activity, Ann. N. Y. Acad. Sei. 81: 221.

    Article  CAS  Google Scholar 

  • Huxley, A. F., and Stämpfli, R., 1949, Evidence for saltatory conduction in peripheral myelinated nerve fibres, J. Physiol. (London) 108: 315.

    Google Scholar 

  • Huxley, A. F., and Stämpfli, R., 195la, Direct determination of membrane resting potential and action potential in single myelinated nerve fibres, J. Physiol. (London) 112: 476.

    Google Scholar 

  • Huxley, A. F., and Stämpfli, R., 1951b, Effect of potassium and sodium on resting and action potentials of single myelinated nerve fibres, J. Physiol. (London) 112: 496.

    CAS  Google Scholar 

  • Jack, J. J. B., 1975, Physiology of peripheral nerve fibres in relation to their size, Br. J. Anaesth. 47:173. Kaars, C., and Faber, D. S., 1981, Myelinated central vertebrate axons lack voltage-sensitive potassium conductance, Science 212: 1063.

    Google Scholar 

  • Keynes, R. D., and Ritchie, J. M., 1984, On the binding of labelled saxitoxin to the squid giant axon, Proc. R. Soc. London [Biol.] (in press).

    Google Scholar 

  • Keynes, R. D., and Rojas, E., 1974, 1I1he kinetics and steady state properties of the charged system controlling sodium conductance in the squid giant axon, J. Physiol. (London) 239: 393.

    Google Scholar 

  • Kocsis, J. D., and Waxman, S. G., 1980, Absence of potassium conductance in central myelinated neurons, Nature (London) 287:3’18.

    Google Scholar 

  • Kocsis, J. D., and Waxman, S. G., 1981, Action potential electrogenesis in mammalian central axons, Adv. Neurol. 31: 299.

    CAS  Google Scholar 

  • Kocsis, J. D., Waxman, S. G., Hildebrand, C., and Ruiz, J. A., 1983, Regenerating mammalian nerve fibres: changes in action potential form and firing characteristics following blockage of potassium conductance, Proc. R. Soc. London [Biol.] 217: 77.

    Article  Google Scholar 

  • Koles, Z. J., and Rasminsky, M., 1972, A computer simulation of conduction in demyelinated nerve fibres, J. Physiol. (London) 227: 351.

    CAS  Google Scholar 

  • Kostyuk, P. C;., Krishtal, O. A., and Pidoplichko, V. I., 1977, Asymmetrical displacement currents in nerve cell membrane and effect of internal fluoride, Nature (London) 267: 70.

    CAS  Google Scholar 

  • Kriegler, J. S., Krishnan, N., and Singer, M., 1981, “Erophic interactions in neurons and glia, Adv. Neurol. 31: 479.

    Google Scholar 

  • Kuffler, S. W., and Nicholls, J. G., 1976, A Cellular Approach to the Function of the Nervous System, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Landon, D. N., 1981, Structure of normal peripheral myelinated nerve fibers, Adze. Neurol. 71:25. Landon, D. N., and Hall, S. M., 1972, The myelinated nerve fiber, in: The Peripheral Nerve ( D. N. Landon, ed.), pp. 1–103, Wiley, New York.

    Google Scholar 

  • Landon, D. N., and Williams, P. L., 1963, Ultrastructu e of the node of Ranvier, Nature (London) 199: 575.

    Article  CAS  Google Scholar 

  • Lillie, R. S., 1925, Factors affecting transmission and recovery in the passive iron nerve model, J. Gen. Physiol. 7: 173.

    Article  Google Scholar 

  • I,ubitiska, L., 1961, Demyelination and rcmyelinatton in the proximal parts of regenerating nerve fibers, J. Comp. Neurol. 117: 275.

    Google Scholar 

  • Meszler, R. NI., Pappas, G. D., and Bennett, M. V. L., 1971, Morphology of the electrotnotor system in the spinal cord of the electric eel, Electrophorus elect riens, J. NeurocViol. 3: 251.

    Article  Google Scholar 

  • Moore, J. W., Narahashi, T., and Shaw, T. I., 1967, An upper limit to the number of sodium channels in nerve membrane?, J. Physiol. (London) 188: 99.

    CAS  Google Scholar 

  • Moore, J. W., Joyner, R. 1V., Brill, M. H., Waxman, S. G., and Najar-Joa, M., 1978, Simulations of conduction in uniform myelinated fibers: Relative sensitivity to changes in nodal and internodal parameters, Biophys. J. 21: 117.

    Google Scholar 

  • Munson, R., AVesterutark, B., and Glaser, I,., 1979, Tetradotoxin-sensitive sodium channels in normal human fibroblasts and normal human glta-like cells, Proc. Natl. Acad. Sci. U.S.A. 76: 6–125.

    Article  Google Scholar 

  • Nonner, W., 1969, A new voltage clamp method for Ranvier nodes, Pfluegers Arch. 309:1193. Nonner, W., 1980, Relations between the inactivation of Na channels and the immobilization of gating charge in frog myelinated nerve, J. Physiol. (Loudon) 299: 573.

    Google Scholar 

  • Nonner, W., and St)itnpfli, IL, 1969, A new voltage cutup method, in: Laboratory Techniques in

    Google Scholar 

  • Membrane Biophysics (H. Passow and R. Stäutpfli, eds), pp. 171–175, Springer-Verlag, Berlin. Nonner, W., Rojas, E., and St3intpfli, R., 1975, Displacement currents in the node of Ranvier. Pflueger.sArch. 354:1.

    Google Scholar 

  • Orkand, R. K., Orkand, P. M., and Tang, (:.-M., 1981, Membrane properties of neuroglia in the optic nerve of Necturus, J. Exp. Biol. 95: 49.

    Google Scholar 

  • Paintal, A. S., 1965, Effects of temperature on conduction in single vagal and myelinated ticrve fibres of the cat, J. Physiol. (London) 180: 20.

    CAS  Google Scholar 

  • Paitital, A. S., 1978, Conduction properties of normal peripheral mammalian axons, in: Physiology and Pathobiology in Axons (S. G. Waxman, ed.), pp. 131–1. 14, Raven Press, New York.

    Google Scholar 

  • Pellegrino, R. G., Ritchie, J. M., and Spencer, P. S., 1982, The rate of Schwann cell division in the clearance of nodal axolemtna following nerve section in the cat, J. Physiol. (London) 334: 68.

    Google Scholar 

  • Pouyssegur, J., Jacques, Y., and Lazdunski, M., 1980, Identification of a tetrodotoxin-sensitive Na’channel in a variety of fibroblast lines, Nature (London) 286: 162.

    Article  CAS  Google Scholar 

  • Raine, C. S., 1977, Morphological aspects of myelin and myelination, in: Myelin (P. More11, ed.), pp. 1–49, Plenum Press, New York.

    Google Scholar 

  • Ranvier, M. I., 1878, Leçons sur l’Histologie du Système Nerveux, Librairie E. Savy, Paris. Raymond, S. A. 1979, Effects of nerve impulses on threshold of frog sciatic nerve fibres, J. Physiol. (London) 290: 273.

    Google Scholar 

  • Ritchie, J. M., 1973, Energetic aspects of nerve conduction: The relationship between heat production, electrical activity and metabolism, Prog. Biophys. ‘dol. Biot 26: 117.

    Google Scholar 

  • Ritchie, J. M., 1978, Sodium channel as a drug receptor, in: Cell “Membrane Receptors for Drugs and Hormones: A Multi-disciplinary Approach ( R. IV. Straub and L. Bolls, eds.), pp. 227–242, Raven Press, New York.

    Google Scholar 

  • Ritchie, J. VI., 1983, On the relation between fibre diameter and conduction velocity in myelinated nerve fibres, Prot R. Soc. London Ser. B 217: 29.

    Article  Google Scholar 

  • Ritchie, J. M., and Chiu, S. Y., 1981, Distribution of sodium and potassium channels in mammalian myelinated nerve, Adz. Neurol. 31: 329.

    CAS  Google Scholar 

  • Ritchie, J. M., and Rang, H. P., 1983, Extraneuronal sax toxin binding sites in rabbit myelinated nerve, Proc. Natl. Acad.Sri. U.S.A. 80: 2803.

    Article  CAS  Google Scholar 

  • Ritchie, J. M., and Rogart, R. B., 1977a, The density, of sodium channels in mammalian myelinated nerve fibers and the nature of the axonal membrane under the myelin sheath, Proc. Natl. Arad. Sri. U.S.A. 74: 211.

    Article  CAS  Google Scholar 

  • Ritchie, J. M., and Rogart, R. B., 1977b, The binding of saxitoxin and tetrodotoxin to excitable tissue, Rev. Physiol. Biochent. Piuzrmarol. 79: 1.

    Article  CAS  Google Scholar 

  • Ritchie, J. M., and Stagg, D., 1982, On the effect of potassium conductance (g h -) on conduction velocity in myelinated nerve, J. Physiol. (London) 328: 32 P.

    Google Scholar 

  • Ritchie, J. NI., Rang, H. P., and Pellegrino, R., 1981, Sodium and potassium channels in demyelinated and remyelinated mammalian nerve, Nature (London) 294: 257.

    Article  CAS  Google Scholar 

  • Rosen bluth, J. 1981, Freeze-fracture approaches to ionophore localization in normal and myelin-deficient nerve’s, Adz. Neurol. 31: 391.

    Google Scholar 

  • Rushton, W. A. H., 1951, A theory of the effects of fibre size in medullated nerve, J. Physiol. (London) 115: 112.

    Google Scholar 

  • Schauf, C. I., and Davis, F. A., 1974, Impulse conduction in multiple sclerosis: A theoretical basis for modification by temperature and pharmacological agents, J. Neurol. Neurosurg. Psychiatry 37: 152.

    Article  PubMed  CAS  Google Scholar 

  • Sherratt, R. M., Bostock, II., and Sears, ‘1’. A., 1980, Effects of 4-aminopyridine on normal and demyelinated mammalian nerve fibres, Nature (London) 283: 570.

    Article  CAS  Google Scholar 

  • Sigworth, F. J., 1979, Analysis of nonstationary sodium current fluctuations in frog myelinated nerve, Ph.D. thesis, Yale University, New Haven, Connecticut.

    Google Scholar 

  • Smith, K. J., and Schauf, C. L., 1981, Size-dependent variation of nodal properties in myelinated nerve, Nature (London) 293: 297.

    Article  CAS  Google Scholar 

  • St3mpfli, R., 1951, Saltatory conduction in nerve, Physiol. Rev. 34: 101.

    Google Scholar 

  • Stämpfli, R., 1981, Overview of studies on the physiology of conduction in myelinated nerve fibers, Adz. Neurol. 31: 11.

    Google Scholar 

  • Stämpfli, R., and Hille, B., 1976, Electrophysiology of the peripheral myelinated nerve, in: Frog Neurobiology ( R. Llinas and W. Precht, eds.), pp. 3–32, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Tang, C. M., Strichartz, G. R., and Orkand, R. K., 1979, Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa, J. Gen. Physiol. 74: 629.

    Article  PubMed  CAS  Google Scholar 

  • Tasaki, I., 1953, Nervous Transmission, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Tasaki, I., 1955, New measurements of the capacity and resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fibre, Aoz. J. Physiol. 181: 639.

    CAS  Google Scholar 

  • Tasaki, I., and Frank, K., 1955, Measurement of the action potential of myelinated nerve fiber, Am. J. Physiol. 182: 572.

    PubMed  CAS  Google Scholar 

  • Villegas, J., Sevcik, C., Barnola, F. V., and Villegas, R., 1976, Grayanotoxin, veratrine, and tetrodotoxinsensitive sodium pathways in the Schwann cell membrane of squid nerve fibers, J. Gen. Physiol. 67: 369.

    Article  PubMed  CAS  Google Scholar 

  • Waxman, S. G., 1975, Integrative properties and design principles of axons, Int. Reza. Neurobiol. 18:1. Waxman, S. G. 1980, Determinants of conduction velocity in myelinated nerve fibres, Muscle Nerze 3: 111.

    Google Scholar 

  • Waxman, S. G., and Bennett, M. V. I., 1972, Relative conduction velocities of small myelinated and nonmyelinated fibres in the central nervous system, Nature (London) New Biol. 238: 217.

    Article  CAS  Google Scholar 

  • Waxman, S. G., and Brill, M. II., 1978, Conduction through demyelinated plaques in multiple sclerosis: Waxman, S. G., and Melker, R. J., 1971, Closely spaced nodes of Ranvier in the mammalian brain, Brain Res. 32: 415.

    Google Scholar 

  • Wood, S. I., and Waxman, S. G., 1982, Conduction in demyelinated nerve fibres: Computer simulations of the effect of variation in voltage-sensitive ionic conductances in: Proc. IT’ Ann. IEEE Frontiers of Engineering in Health Care: 11.7.1:124.

    Google Scholar 

  • Woodbury, J. W. 1952, Direct membrane and action potential from single myelinated nerve fibers, J. Cell. Comp. Physiol. 39: 323.

    Article  CAS  Google Scholar 

  • Yates, A. J., Bouchard, J. P., and yVherrett, J. R., 1976, Relation of axon membrane to myelin in sciatic nerve during development: Comparison of morphological and chemical parameters, Brain Res. 104: 261.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ritchie, J.M. (1984). Physiological Basis of Conduction in Myelinated Nerve Fibers. In: Morell, P. (eds) Myelin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1830-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1830-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1832-4

  • Online ISBN: 978-1-4757-1830-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics