Myelin pp 97-116 | Cite as

Molecular Organization of Myelin

  • Peter E. Braun


For many years, myelin was the focal point for studies of membrane structure, largely because of its abundance and accessibility for chemical analyses, and its ordered laminar structure, which made it amenable to physical measurements. It is widely recognized that myelin is a highly specialized membrane, both in structure and in function, and that it should perhaps be thought of as an organelle derived from the plasma membrane of oligodendrocytes or Schwann cells as a result of cellular differentiation processes that occur during development of the nervous system. To gain some insight into the complexities of this membranous structure, it is important to relate the growing body of structural information on myelin to the general principles of membrane structure that have emerged from the numerous studies of other membrane systems. Thus, I have attempted in this chapter to discuss in a critical way those studies from which our current concepts of myelin structure have evolved and to frame this discussion in the broader context of membrane structure that is emerging from other investigations. No claim, however, is made for comprehensiveness in the citation of studies on myelin or in the review of supporting material, since this review is not intended to be an encyclopedic documentation of all contributions to the field.


Peripheral Nervous System Myelin Basic Protein Basic Protein Myelin Sheath Myelin Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blaurock, A. E., 1981, The spaces between membrane bilayers within PNS myelin as characterized by X-ray diffraction, Brain Res. 210: 383.PubMedCrossRefGoogle Scholar
  2. Boggs, J. M., and Moscarello, M. A., 1978, Effect of basic protein from human CNS myelin on lipid bilayer structure, J. /14enzbr. Biol. 39: 75–96.Google Scholar
  3. Boggs, J. M., Moscarello, M. A., and Papahadjopoulos, D., 1977, Phase separation of acidic and neutral phospholipids induced by human myelin basic protein, Biochemistry 16: 5420–5426.PubMedCrossRefGoogle Scholar
  4. Boggs, J. M., Wood, D. D., and Moscarello, M. A., 1981, Hydrophobic and electrostatic interactions of myelin basic protein with lipid: Participation of N-terminal and C-terminal protons, Biochemistry 20: 1065–1073.PubMedCrossRefGoogle Scholar
  5. Boggs, J. M., Clement, I. R., Moscarello, M. A., Eylar, E. H., and Haskin, G., 1981b, Antibody precipitation of lipid vesicles containing myelin proteins: Dependence on lipid composition, J. Immunology 126: 1207–1211.Google Scholar
  6. Boggr., J. M., Moscarello, M. A., and Papahadjopoulos, D., 1982, Structural organization of myelin —Role of lipid-protein interactions determined in model systems, in: Lipid-Protein Interactions ( P. Jost and O. H. Griffith, eds.), pp. 1–51, Wiley, New York.Google Scholar
  7. Brady, G. W., Birnbaum, P. S., Moscarello, M. A., and Papahadjopoulos, D., 1979, The model membrane system: Egg lecithin and myelin protein (N-2), effect of solvent density variation on the X-ray scattering, Biophys. J. 26: 49–60.PubMedCrossRefGoogle Scholar
  8. Braun, P. E., 1977, Molecular architecture of myelin, in: Myelin (Morell, ed.), Plenum Press, New York. Braun, P. E., and Radin, N. S., 1969, Interaction of lipids with a membrane structural protein from myelin, Biochemistry 8: 1310.Google Scholar
  9. Braun, P. E., Frail, D. E., and I.aloe, N., 1982, Myelin-associated glycoprotein is the antigen for a monoclonal IgM in polyneuropathy, J. Neurochem. 39: 1261–1265.PubMedCrossRefGoogle Scholar
  10. Brinkley, B. R., 1981, Organization of the cytoplasm, Cold Spring Harbor Symp. Quant. Biol. 16: 1029–1040.Google Scholar
  11. Capone, J., I.eblanc, P., Gerber, G. E., and Ghosh, H. P., 1983, Localization of membrane proteins by the use of a photoreactive fatty acid incorporated in vivo into vesicular stomatitis virus, J. Biol. Chem. 258: 1395–1398.PubMedGoogle Scholar
  12. Chapman, B. E., and Moore, W. j., 1976, Conformation of myelin basic protein in aqueous solution from NMR spectroscopy, Biochem. Biophys. Res. Commun. 73: 758–766.PubMedCrossRefGoogle Scholar
  13. Chapman, D., and Wallach, D. F. H., 1968, Recent physical studies of phospholipids and natural membranes, in: Biological Membranes ( D. Chapman, ed.), pp. 125–202, Academic Press, New York.Google Scholar
  14. Cherry, R. J., Mueller, U., Holenstein, C., and Heyn, M. P., 1980, Lateral segregation of proteins induced by cholesterol in bacteriorhodopsiu-phospholipid vesicles, BiocIiirn. Biophys. Acta 596: 145–151.CrossRefGoogle Scholar
  15. Cullen, M. J., DeVries, G. H., and Webster, H. de F., 1981, Freeze-fracture characterization of isolated myelin and axolemma membrane fractions, Brain Res. 229: 311–322.PubMedCrossRefGoogle Scholar
  16. Dawson, R. M. C., 1969, Metabolism and function of polyphosphionositides in nervous tissue, Ann. N. Y. Acad. Sci. 165: 774–783.PubMedGoogle Scholar
  17. Dea, P., Chan, S. I., and Dea, F. J., 1972, High-resolution proton magnetic -resonance spectra of a rabbit sciatic nerve, Science 175: 206.PubMedCrossRefGoogle Scholar
  18. Dreiling, C. E., Schilling, R. J., and Reitz, R. C., 1981, 2’,3’-Cyclic nucleotide 3’-phosphohydrolase in rat liver mitochondrial membranes, Biochim. Biophys. Acta 640: 114–120.Google Scholar
  19. Fisher, K. A., 1976, Analysis of membrane halves: Cholesterol, Proc. Natl. Acad. Sci. U.S.A. 73: 173–177.PubMedCrossRefGoogle Scholar
  20. Golds, E. E., and Braun, P. E., 1976, Organization of membrane proteins in the intact myelin sheath:Google Scholar
  21. Pyridoxal phosphate and salicyladehyde as probes of myelin structure, J. Biol. Chem. 251:4729 Golds, E. E., and Braun, P. E., 1978a, Cross-linking studies on the conformation and dimerization of myelin basic protein in solution, J. Biol. Chem. 253:8171–8177.Google Scholar
  22. Golds, E. E., and Braun, P. E., 1978b, Protein associations and basic protein conformation in the myelin membrane, J. Biol. Chem. 253:8162–8170Google Scholar
  23. Gozes, I., and Richter-Landsberg, C., 1978, Identification of tubulin associated with rat brain myelin, FEBS Lett. 95: 169–172.PubMedCrossRefGoogle Scholar
  24. Griffith, O. H., Dehlinger, P. J., and Van, S. P., 1974, Shape of the hydrophobic barrier of phospholipid bilayers: Evidence for water penetration in biological membranes, J. Membr. Biol. 15: 159.PubMedCrossRefGoogle Scholar
  25. Guarnieri, M., 1975, Reaction of anti-phosphatidyl inositol antisera with neural membranes, Lipids 10: 294.PubMedCrossRefGoogle Scholar
  26. Hollingshead, C. J., Caspar, D. L. D., Melchior, V., and Kirschner, D. A., 1981, Compaction and particle segregation in myelin membrane arrays, J. Cell Biol. 89: 631.PubMedCrossRefGoogle Scholar
  27. Jones, A. J. S., and Rumbsy, M. G., 1977, Localization of sites for ionic interaction with lipid in the C-terminal third of the bovine myelin basic protein, Biochem. J. 167: 583–591.PubMedGoogle Scholar
  28. Keniry, M. A., and Smith, R., 1979, Circular dichroia analysis of the secondary structure of myelin basic protein and derived peptides bound to detergents and to lipid vesicles, Biochim. Biophys. Acta. 578: 381–391.PubMedCrossRefGoogle Scholar
  29. Kirschner, D. A., and Ganser, A. L., 1982, Myelin labeled with mercuric chloride: Asymmetric localization of phosphatidylethanolamine plasmalogen, J. Mol. Biol. 157: 635–658.PubMedCrossRefGoogle Scholar
  30. Kirschner, D. A., Hollingshead, C. J., Thaxton, C., Caspar, D. L. D., and Goodenough, D. A., 1979, Structural states of myelin observed by X-ray diffraction and freeze-fracture electron microscopy, J. Cell Biol. 82: 140–149.PubMedCrossRefGoogle Scholar
  31. Ladbrooke, B. D., Jenkinson, T. J., Kama t, V. B., and Chapman, D., 1968, Physical studies of myelin. I. Thermal analysis, Biochim. Biophys. Acta 164: 101.PubMedCrossRefGoogle Scholar
  32. Lavialle, F., Foresta, B., Vacher, M., Nicot, C., and Alf sen, A., 1979, The molecular size and shape of theGoogle Scholar
  33. Folch-Pi apoprotein in aqueous and organic solvents, Eur. J. Biochem. 95: 561–567.Google Scholar
  34. Leblanc, P., Capone, J., and Gerber, G. E., 1982, Synthesis and biosynthetic utilization of radioactive photoreactive fatty acids, J. Biol. Chem. 257:14, 586–14, 589.Google Scholar
  35. Liebes, L. F., Zand, R., and Phillips, W. D., 1975, Solution behavior, circular dichroism and 220 MHzGoogle Scholar
  36. PMR studies of the bovine myelin basic protein, Biochim. Biophys. Acta 405:27–39.Google Scholar
  37. Lin, L.-F., H., and Lees, M., 1982, Interaction of dicyclohexylcarbodiimide with myelin proteolipid, Proc. Natl. Acad. Sci. U.S.A. 79: 941.CrossRefGoogle Scholar
  38. Linington, C., and Rumsby, M. G., 1980, Accessibility of galactosyl ceramides to probe reagents in CNS myelin, J. Neurochem. 35: 983–992.PubMedCrossRefGoogle Scholar
  39. London, Y., Demel, R., Geurts Van Kessel, W. S. M., Vossenberg, F. G. A., and Van Deenen, L. L. M., 1973, The protection of a myelin basic protein against the action of proteolytic enzymes after interaction of the protein with lipids at the air-water interface, Biochim. Biophys. Acta 311: 520.PubMedCrossRefGoogle Scholar
  40. Mabrey, S., Mateo, P. L., and Sturtevant, J. M., 1978, High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl-and dipalmitoylphosphatidylcholines, Biochemistry 17: 2464–2468.PubMedCrossRefGoogle Scholar
  41. Macklin, W. B., Braun, P. E., and Lees, M., 1982, Electroblot analysis of the myelin proteolipid protein, J. Neurosci. Res. 7: 1–10.PubMedCrossRefGoogle Scholar
  42. Martenson, R. E., 1980, Myelin basic protein: What does it do?, in: Biochemistry of the Brain ( S. Kumar, ed.), pp. 47–79, Wiley, N. Y.Google Scholar
  43. Matthieu, J. M., and Waehneldt, T. V., 1978, Protein and enzyme distribution in microsomal and myelin fractions from rat and Jimpy mouse brain, Brain Res. 150: 307–318.PubMedCrossRefGoogle Scholar
  44. McIntyre, R. J., Quarles, R. H., Webster, H. de F., and Brady, R. O., 1978, Isolation and characterization of myelin-related membranes, J. Neurochem. 30: 991–1002.PubMedCrossRefGoogle Scholar
  45. Moscarello, M. A., Gagnon, J., Wood, D. D., Anthony, J., and Epand, R. M., 1973, Conformational flexibility of a myelin protein, Biochemistry 12: 3402–3406.PubMedCrossRefGoogle Scholar
  46. Müller, H. W., Clapshaw, P. A., and Seifert, W., 1981, Intracellular localization of 2’,3’-cyclic nucleotide 3’-phosphodiesterase in a neuronal cell line as examined by immunofluorescence and cell fractionation, J. Neurochem. 37: 947–955.PubMedCrossRefGoogle Scholar
  47. Nagara, H., and Suzuki, K., 1982, Radial component of the central myelin in neurologic mutant mice, Lab. Invest. 47: 51–59.PubMedGoogle Scholar
  48. O’Brien, J. S., 1965, Stability of the myelin membrane: Lipid molecules may impart stability to the myelin membrane through intermolecular cohesion, Science 147: 1099.PubMedCrossRefGoogle Scholar
  49. Omlin, F. X., Webster, H. de F., Palkoviti, G. G., and Cohen, S. R., 1982, Immunocytoehemieal localization of basic protein in major dense line regions of central and peripheral myelin, J. Cell Biol. 95: 242–248.PubMedCrossRefGoogle Scholar
  50. Palmer, F. B., and Dawson, R. M. C., 1969, Complex-formation between triphosphoinositide and experimental allergic encepholitogenic protein, Biochem. J. 111: 637.Google Scholar
  51. Penman, S., Fulton, A., Capco, D., Ben Zeev, A., Wittelsberger, S., and Tse, C. F., 1982, Cytoplasmic and nuclear architecture in cells and tissue: Form, function and mode of assembly, Cold Spring Harbor Symp. Quant. Biol. 16: 1013–1028.CrossRefGoogle Scholar
  52. Pereyra, P. M., 1983, Ph.D. dissertation, McGill University. Studies on the mechanism of assembly of myelin in the CNS.Google Scholar
  53. Peters, A., Palay, S. L., and Webster, H. de F., 1976, The Fine Structure of the Nervous System, W. B. Saunders, Philadelphia.Google Scholar
  54. Peterson, R. G., and Sea, C. P., 1975, Ultrastructure and biochemistry of myelin after isoniazid-induced nerve degeneration in rats, Exptl. Neurol. 48: 252–260.CrossRefGoogle Scholar
  55. Peterson, R. G., and Gruener, R. W., 1978, Morphological localization of PNS myelin proteins, Brain Res. 152: 17–29.PubMedCrossRefGoogle Scholar
  56. Poduslo, J. F., and Braun, P. E., 1975, Topographical arrangement of membrane proteins in the intact myelin sheath, J. Biol. Chem. 250: 1099.PubMedGoogle Scholar
  57. Poduslo, J. F., Quarles, R. II., and Brady, R. O., 1976, External labeling of galactose in surface membrane glycoproteins of the intact myelin sheath, J. Biol. Chem. 251: 153–158.PubMedGoogle Scholar
  58. Quarles, R. H., 1980, Glycoproteins from central and peripheral myelin, in: Myelin: Chemistry and Biology ( G. A. Hashim, ed.), pp. 55–77, Alan Liss, New York.Google Scholar
  59. Raine, C. S., Johnson, A. B., Marcus, D. M., Suzuki, A., and Bornstein, M., 1981, Demyelination in vitro: Google Scholar
  60. Absorption studies demonstrate that galactocerebroside is a major target, J. Neural. Sc i. 52:117–131. Reiber, H., 1978, Cholesterol-lipid interactions in membranes: The saturation concentration of cholesterol in bilayers of various lipids, Biochim. Biophys. Acta 512: 72–83.Google Scholar
  61. Reig, J. A. Ramos, J. M., Cozar, M., Aguilar, J. S., Criado, M., and Monreal, J., 1982, Purification and chemical characterization of a W2 protein from brain myelin, J. Neurochem. 39:507–511. Rothman, J. E., and Lenard, J., 1977, Membrane asymmetry, Science 195: 743–753.Google Scholar
  62. Rumsby, M. G., and Crang, A. J., 1977, The myelin sheath—A structural examination, Cell Surf. Rev. 4: 247–362.Google Scholar
  63. Sabatini, D. D., Kreibich, G., Morimoto,’1’., and Adesnik, M., 1982, Mechanisms for the incorporation of proteins in membranes and organelles, J. Cell Biol. 92: 1–22.Google Scholar
  64. Sato, S., Quarles, R. H., and Brady, R. 0., 1982, Susceptibility of the myelin-associated glycoprotein and basic protein to a neutral protease in highly purified myelin from human and rat brain, J. Neurochem. 39: 97–105.Google Scholar
  65. Schnapp, B., and Mugnaini, E., 1978, Membrane architecture of myelinated fibers as seen by freeze-fracture in: Physiology and Pathobiology of Axons (S. G. Waxman, ed.), pp. 83–123, Raven Press, New York.Google Scholar
  66. Schreier, S., Polnaszek, C. F., and Smith, I. C. P., 1978, Spin labels in membranes: Problems in practice, Biochim. Biophys. Acta 515: 375–136.Google Scholar
  67. Shapira, R., Môrley, W. C., Thiele, S. B., Wilhelmi, M. R., Wallace, A., and Kibler, R. F., 1978, Localization of 2’,3’-cyclic nucleotide 3’-phosphohydrolase of rabbit brain by sedimentation in a continuous sucrose gradient, J. Neurochem. 30: 735–744.PubMedCrossRefGoogle Scholar
  68. Singer, S. J., 1974, The molecular organization of membranes, Annu. Rev. Biochem. 43: 805.PubMedCrossRefGoogle Scholar
  69. Smith, R., 1977a, The secondary structure of myelin basic protein extracted by deoxycholate, Biochim. Biophys. Acta 491: 581–590.PubMedCrossRefGoogle Scholar
  70. Smith, R., 1977b, Non-covalent cross-linking of lipid bilayers by myelin basic protein: A possible role in myelin formation, Biochim. Biophys. Acta 470: 170–184.PubMedCrossRefGoogle Scholar
  71. Smith, R., 1980, Sedimentation analysis of the self-association of bovine myelin basic protein, Biochemistry 19: 1826–1831.PubMedCrossRefGoogle Scholar
  72. Smith, R., 1982, Self-association of myelin basic protein: Enhancement by detergents and lipids, Biochemistry 21: 2697–2701.PubMedCrossRefGoogle Scholar
  73. Smith, R., and McDonald, B. J., 1979, Association of myelin basic protein with detergent micelles, Biochim. Biophys. Acta 554: 133–147.PubMedCrossRefGoogle Scholar
  74. Smith, R., Cook, J., and Dickens, P. A., 1983, Structure of the proteolipid protein extracted from bovine CNS myelin with non-denaturing detergents. J. Neurochem. 42: 306–313.CrossRefGoogle Scholar
  75. Spacek, J., and Lieherman, A. R., 1980, The presence and possible significance of agranular reticulum in paranodal oligodendrocyte cytoplasm and in periglomerular astrocyte processes, Brain Res. 196: 498–501.PubMedCrossRefGoogle Scholar
  76. Steck, A. J., Siegrist, H. P., Zahler, P., and Hershkowitz, N. N., 1976, Lipid-protein interactions with native and modified basic protein, Biochim. Biophys. Acta. 455: 343–352.PubMedCrossRefGoogle Scholar
  77. Sternberger, N. H., Quarles, R. H., Itoyama, Y., and Webster, H. de F., 1979, Myelin-associated glycoproteins demonstrated immunocytochemically in myelin and myelin-forming cells of developing rat, Proc. Nall. Acad. Sei. U.S.A. 76: 1510–1514.CrossRefGoogle Scholar
  78. Tabira, T., and Webster, H. de F., 1979, E-PTA stains oligodendroglial surface membranes and microtubules in optic nerves during myelination, J. Neurol. Sei. 42: 215–227.CrossRefGoogle Scholar
  79. Tabira, T., Cullen, M. J., Reiff, P. J., and Webster, H. de F., 1978, An experimental analysis of interlammellar tight junctions in amphibian and mammalian CNS myelin, J. Neurocytol. 1: 489–503.CrossRefGoogle Scholar
  80. Trapp, B. D., and Quarks, R. H., 1982, Presence of the myelin-associated glycoprotein correlates with alterations in the periodicity of peripheral myelin, J. Cell Biol. 92: 877–882.PubMedCrossRefGoogle Scholar
  81. Trapp, B. D., McIntyre, L. J., Quarles, R. H., Sternberger, N. H., and Webster, H. de F., 1979, 1mmunoeytocheruica1 localization of rat PNS myelin proteins: P2 protein is not a component of all PNS myelin sheaths, Proc. Natl. Acad. Sci. U.S.A. 76: 3552–3556.Google Scholar
  82. Trapp, B. D., Itoyama, Y., Macintosh, “F. D., and Quarles, R. H., 1983, P2 protein in oligodendrocvtes and myelin of the rabbit CNS, J. Neurochem. 40: 47–54.Google Scholar
  83. Vandenheuvel, F. A., 1965, Study of biological structure at the molecular level with stereomodel projections. II. The structure of myelin in relation to other membrane systems, J. Ant. Oil Chem. Soc. 42: 481.CrossRefGoogle Scholar
  84. Wallach, D. F. H., and Winzler, R. J., 1974, Evolving Strategies and Tactics in Membrane Research, pp. 1–370, Springer-Verlag, New York.CrossRefGoogle Scholar
  85. Webster, H. de F., Palkovitz, C. G., Stoner, G. L., Favilla, J. T., Frail, D. E., and Braun, P. E., 1983, Electron microscopic immunocytochemical localization of myelin-associated glycoprotein in compact developing and adult CNS myelin, J. Neurochem. 41: 1469–1479.PubMedCrossRefGoogle Scholar
  86. Wiley, C. A., and Ellisman, M. H., 1980, Rows of dimeric particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the paranodal glial-axonal junction at the node of Ranvier, J. Cell Biol. 84: 261–280.PubMedCrossRefGoogle Scholar
  87. Wilson, L., and Margolis, R. L., 1981, Microtubule treadmills and their possible cellular functions, Cold Spring Harbor Syrup. Quant. Biol. 16: 199–205.Google Scholar
  88. Wood, D. D., Epand, R. M., and Moscarello, M. A., 1977, Localization of the basic protein and lipophilin in the myelin membrane with a non-penetrating reagent, Biochim. Biophys. Acta 467: 120–129.PubMedCrossRefGoogle Scholar
  89. Wood, D. D., Boggs, J. M., and Moscarello, M. A., 1980, The transmembrane orientation of lipophilin in phosphatidylcholine vesicles, Neurochem. Res. 5: 745–756.PubMedCrossRefGoogle Scholar
  90. Wood, J. G., and McLaughlin, B. J., 1975, The visualizaiton of concanavalin-A binding sites in the interperiod line of rat sciatic nerve myelin, J. Neurochem. 24: 233.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Peter E. Braun
    • 1
  1. 1.Department of BiochemistryMcGill UniversityMontrealCanada

Personalised recommendations