Myelin pp 369-403 | Cite as

Chemical Pathology of Diseases Involving Myelin

  • William T. Norton
  • Wendy Cammer


As emphasized in Chapter 5, myelin is a very plentiful substance, comprising 50% of brain white matter and possibly an even larger percentage of myelinated peripheral nerves. Since myelin is a cellular component, it is dependent for its maintenance on the integrity of the generating cell, either the oligodendroglial cell in the central nervous system (CNS) or the Schwann cell in the peripheral nervous system (PNS). Although the nature of the biological relationship is unclear, myelin is also absolutely dependent on the integrity of the axon that it invests. As a consequence of these dependencies, many disorders of the nervous system that affect general cell functioning, and all those that result in the death of neurons, will involve a loss of myelin. Because of the normally high concentration of myelin and its characteristic composition, such losses are relatively easy to detect both histologically and chemically and can be a significant pathological finding in a multitude of conditions. It is, however, not always clear whether myelin loss should be considered a significant event in the disease process or whether it is incidental to some more primary damage.


Multiple Sclerosis White Matter Schwann Cell Phytanic Acid Cholesterol Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, M., Wallace, B. J., Schnock, L., and Volk, B. W., 1966, Fine structure of spongy degeneration of the central nervous system (van Bogaert and Bertrand type), J. Nenropathol. Exp. Neurol. 25: 598.CrossRefGoogle Scholar
  2. Adachi, M., Schneck, L., Torii, J., and Volk, B. W., 1970, Histochemical, ultrastructural and biochemical studies of a case with leukodystrophy due to congenital deficiency of myelin, J. Neuropathol. Exp. Neurol. 29: 601.PubMedCrossRefGoogle Scholar
  3. Adams, C. W. M., 1972, Research on Multiple Sclerosis, Charles C “Thomas, Springfield, Illinois.Google Scholar
  4. Agranoff, B. W., and Goldberg, D., 1974, Diet and the geographical distribution of multiple sclerosis, Lancet 2: 1061.PubMedCrossRefGoogle Scholar
  5. Agrawal, H. C., and Davison, A. N., 1973, Myelination and amino acid imbalance in the developing brain, in: Biochemistry of Developing Brain, Vol. 1 ( W. Himwich, ed.), pp. 143–186, Marcel Dekker, New York.Google Scholar
  6. Aldridge, W. N., and Street, B. W., 1964, Oxidative phosphorylation: Biochemical effects and properties of trialkyltins, Biochem. J. 91: 287.PubMedGoogle Scholar
  7. Aleu, F. P., Katzman, R., and Terry, R. D., 1963, Fine structure and electrolyte analyses of cerebral edema induced by alkyl tin intoxication, J. Neuropathol. Exp. Neural. 23: 403.CrossRefGoogle Scholar
  8. Allen, I. V., and McKeown, S. R., 1979, A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis, J. Neural. Sci. 41: 81.CrossRefGoogle Scholar
  9. Allen, I. V., Glover, G., McKeown, S. R., and McCormick, D., 1979, The cellular origin of lysosomal enzymes in the plaque in multiple sclerosis. II. A histochemical study with combined demonstration of myelin and acid phosphatase, Neuropathol. Appi. Neurobiol. 5: 197.CrossRefGoogle Scholar
  10. Allen, I. V., Glover, G., and Anderson, R., 1981, Abnormalities in the macroscopically normal white matter in cases of mild or spinal multiple sclerosis (MS), Acta Neuropathol. Suppl. 7: 176.PubMedCrossRefGoogle Scholar
  11. Alling, C., Vanier, M.-T., and Svennerholm, L., 1971, Lipid alterations in apparently normal white matter in multiple sclerosis, Brain Res. 35: 325.PubMedCrossRefGoogle Scholar
  12. Althaus, H. H., Pilz, H., and Md, D., 1973, The protein composition of myelin in multiple sclerosis (MS) and orthochromatic leukodystrophy (OLD), Z. Neurol. 205: 229.PubMedCrossRefGoogle Scholar
  13. Alvord, E. C., Jr., Stevenson, L. D., Vogel, F. S., and Engle, R. L., Jr., 1950, Neuropathological findings in phenyl-pyruvic oligophrenia (phenyl-ketonuria), J. Neuropathol. Exp. Neurol. 9: 298.PubMedCrossRefGoogle Scholar
  14. Ansel], G. B., and Spanner, S., 1968, Plasmalogenase activity in normal and demyelimuing tissue of the CNS, Biochem. J. 108: 207.Google Scholar
  15. Arnason, B. G. W., 1975, Inflammatory polyradiculoneuropathics, in: Peripheral Neuropathy, ( P. J. Dyck, P. K. Thomas, and E. H. Lambert, eds.), pp. 1110–1148, W. B. Saunders, Philadelphia.Google Scholar
  16. Arnason, B. G., 1977, Polyneuritis, in: Scientific Approaclies to Clinical Neurology, ( E. S. Goldensohn and S. H. Appel, eds.), pp. 1494–1509, Lee and Febiger, Philadelphia.Google Scholar
  17. Arnason, B. G., and Waksman, B. H., 1980, Immunoregulation in multiple sclerosis, Ann. Neurol. 8: 237.PubMedCrossRefGoogle Scholar
  18. Arnetoli, G., Pazzagli, A., and Amaducci, L., 1969, Fatty acid and aldehyde changes in choline-and ethanolamine-containing phospholipids in the white matter of multiple sclerosis brains, J. Neurochem. 16: 461.PubMedCrossRefGoogle Scholar
  19. Arstila, A. U., Riekkinen, P. J., Rinne, U. K., Pelliniemi, T. “T., and Nevalainen, T., 1971, Guillain-Barré syndrome: Neurochemical and ultrastructural study, Eur. Neurol. 5: 257.Google Scholar
  20. Arstila, A. U., Riekkinen, P., Rinne, U. K., and Iaitinen, L., 1973, Studies on the pathogenesis of multiple sclerosis: Participation of lysosomes on detnyelination in the central nervous system white matter outside plaques, Eur. Neurol. 9: I.Google Scholar
  21. Asbury, A. K., and Brown, M. J., 1980. The evolution of structural changes in distal axonopathies, in: Experimental and Clinical Neurotoxicology ( P. S. Spencer and H. H. Schaumburg, eds.), pp. 179–192, Williams and Wilkins, Baltimore and London.Google Scholar
  22. Austin, J. H., 1959, Metachromatic sulfatides in cerebral white matter and kidney, Proc. Soc. Exp. Neurol. Med. 100: 361.Google Scholar
  23. Austin, J. H., 1963a, Studies in globoid (Krabbe) leukodystrophy. I. The significance of lipid abnormalities in white matter in eight globoid and thirteen control patients, Arch. Neurol. 9: 207.PubMedCrossRefGoogle Scholar
  24. Austin, J. H., 1963b, Studies in globoid (Krabbe) leukodystrophy. II. Controlled thin-layer chromatographic studies of globoid body fractions in seven patients, J. Neurochem. 10: 921.PubMedCrossRefGoogle Scholar
  25. Austin, J. H., Balasubramanian, A. S., Pattabiraman, T. N, Saraswathi, S., Basu, D. K., and Bachhawat, B. K., 1963, A controlled study of enzymatic activities in three human disorders of glycolipid metabolism, J. Neurochem. 10: 805.PubMedCrossRefGoogle Scholar
  26. Austin, J. H., Suzuki, K., Armstrong, D., Brady, R. O., Bachhawat, B. K., Schlenker, J., and Stumpf, D., 1970, Studies in globoid (Krabbe) leukodystrophy (GLD). V. Controlled enzymatic studies in ten human cases, Arch. Neurol. 23: 502.PubMedCrossRefGoogle Scholar
  27. Bachhawat, B. K., Austin, J. H., and Armstrong, D., 1967, A cerebroside sulfotransferase deficiency in a human disorder of myelin, Biochem. J. 104: 15C.Google Scholar
  28. Baker, R. W. R., Thompson, R. H. S., and Zilkha, K. J., 1963, Fatty acid composition of brain lecithins in multiple sclerosis, Lancet 1: 26.PubMedCrossRefGoogle Scholar
  29. Barclay, L. L., Gibson, G. E., and Blass, J. P., 1981, Impairment of behavior and acetylcholine in thiamine deficiency, J. Pharmacol. Exp. Ther. 217: 537.PubMedGoogle Scholar
  30. Bashir, R. M., and Whitaker, J. N., 1980, Molecular features of immunoreactive myelin basic protein in cerebrospinal fluid of persons with multiple sclerosis, Ann. Neurol. 7:50.Google Scholar
  31. Bernsohn, J., and Stephanides, L. M., 1967, Aetiology of multiple sclerosis, Nature (London) 215:821. Biehl, J. P., and Vilter, R. W., 1951, Effect of isoniazid on vitamin Bt, metabolism: Its possible significance in producing isoniazid neuritis, Proc. Soc. Exp. Biol. llied. 85: 389.Google Scholar
  32. Bignami, A., and Eng, I. F., 1973, Biochemical studies of myelin in kVallerian degeneration of rat optic nerve, J. Neurochem. 20: 165.PubMedCrossRefGoogle Scholar
  33. Blakemore, W. F., 1980, Isoniazid, in: Experimental and Clinical Neurotoxicology (P. S. Spencer and H. H. Schaumburg, eds.), pp. 476–489, Williams and Wilkins, Baltimore and London.Google Scholar
  34. Blaker, W. D., Krigman, M. R., Thomas, D. J., Mushak, P., and Morell, P., 1981, Effect of triethyl tin on myelination in the developing rat, J. Neurochem. 36. 14.CrossRefGoogle Scholar
  35. Blank, N. K., Vick, N. A., and Schulman, S., 1975, Wernickes encephalopathy: An experimental study in the rhesus monkey, Arta Neuropathol. (Berlin) 33: 137.CrossRefGoogle Scholar
  36. Blass, J. P., Piacentini, S., Boldizsar, E., and Baker, A., 1982, Kinetic studies of moose brain transketolase, J. Neurochem. 39: 729.PubMedCrossRefGoogle Scholar
  37. Bloom, B. R., Ju, G., Brosnan, C., Cammer, W., and Norton, W., 1978, Notes on the pathogenesis of multiple sclerosis, Neurology 28: 93.PubMedCrossRefGoogle Scholar
  38. Borri, P. E., Bertinelli, R. P., Yost), V., Taramelli, M., Paci, M., and Parini, A., 1969. Cornposizione degli acidi grassi degli esteri del colesterolo della sostanza bianca c:rebrale nella sclerosi multipla, Acta Neurol. (Naples) 24: 593.Google Scholar
  39. Bourre, J. M., Bornhofen, J. H., Araoz, C. A., Daudu, O., and Baumann, N. A., I978a. Pelizaeus Merzbacher disease: Brain lipid and fatty acid composition, J. Neurochem. 30: 719.Google Scholar
  40. Bounce, J. M., Jacque, C., Nguyen-Legros, J., Bornhofen, J. II., Araoz, C. A., Daudu, O., and Baumann, N. A., 1978b, Pelizaeus-Merzbather disease: Biochemical analysis of isolated myelin (electmnnricroscopy: protein, lipid and unsubstituted fatty acids analysis), Fur. Neurol. 17: 317.Google Scholar
  41. Bowen, D. M., and Davison, A. N., 1974, Macrophages and cathepsin A activity in multiple sclerosis brain, J. Neurol. Sci. 21: 227.CrossRefGoogle Scholar
  42. Brierley, J. B., Brown, A. W1., and Calverley, P., 1976, Cyanide intoxication in the rat: Physiological and neuropathological aspects, J. Neurol Neurostng. Psychiatry 39: 129.CrossRefGoogle Scholar
  43. Brierley, J. B., Prior, P. F., Calverley, J., and Brown, A. W., 1977, Cyanide intoxication in Maraca rnulatta, J. Neurol. Sci. 31: 133.PubMedCrossRefGoogle Scholar
  44. Brosnan, C. F., Cammer, W., Norton, W. T., and Bloom, B. R., 1980, Proteinase inhibitors suppress the development of experimental allergic encephalomyelitis. Nature (London) 285: 235.CrossRefGoogle Scholar
  45. Cammer, W., 1980, Toxic-demyelination: Biochemical studies and hypothetical mechanisms, in: Experimental and Clinical Neuroto.xicology (P. S. Spencer and 11. II. Schaumburg, eds.), pp. 239–256, Williams and Wilkins, Baltimore and London.Google Scholar
  46. Cammer, W., 1982, Release of mitochondrial respiratory control by cyanate salts, Biocltint. Biophys. Acta 679: 343.CrossRefGoogle Scholar
  47. Cammer, W., Rose, A. I., and Norton, W. T., 1975, Biochemical and pathological studies of myelin in hexachlorophene intoxication, Brain Res. 98: 547.PubMedCrossRefGoogle Scholar
  48. Cammer, W., Bloom, B. R., Norton, W. “I”., and Gordon, S., 1978, Degradation of basic protein in myelin by neutral proteases secreted by stimulated macrophages: A possible mechanism of inflammatory demyelination, Proc. Natl. Acad. Sci. U. S. A. 75: 1554.Google Scholar
  49. Cammer, W., Brosnan, C. F., Bloom, B. R., and Norton, W. “F”., 1981, Degradation of the PO, Pt, and P, proteins in peripheral nervous system myelin by plasniin: Implications regarding the role of macrophages in demyelinatiog diseases, J. Netooritens. 36: 1506.Google Scholar
  50. Carson, J. H., Bat E., Braun, P. F., and McPherson, T. A., 1978, Components in multiple sclerosis cerebrospinal fluid that are detected by radioimmunoassay for myelin basic protein, Proc. Natl. Acad. Aci. U. S. A. 75: 1976.CrossRefGoogle Scholar
  51. Chopra, J. S., and Fannin, F., 1971, Pathology of diabetic neuropathy, J. Patltof. 104: 173.Google Scholar
  52. Clausen, J., and Hansen, I. B., 1970, Myelin constituents of human central nervous system,.4cta Neurol. Scand. 41: 1.CrossRefGoogle Scholar
  53. Clausen, J., and Miller, J., 1967, Allergic encephalomyelitis induced by brain antigen after a deficiency in polyunsaturated fatty acids during myelination, Acta Neurol. Scaltd. 43: 375.Google Scholar
  54. Clausen, J., Fog, T., and Hansen, I. B., 1972, Myelin constituents in Multiple sclerosis, in: Progress in Multiple Sclerosis, Research and Treatment (P. Leibowitz, ed.), pp. 60–75„ Academic Press. New York.Google Scholar
  55. Clements, R. S., Jr., 1979, Diabetic neutopathy—New (ontepts of its etiology, Diabetes 28: 601.Google Scholar
  56. Cohen, S. R., IIerndon, R. M., and McKhattti, G. NI., 1976, Radioimmunoassay of myelin basic protein in spinal fluid: An index of active demyelination, N. Engl. J. flied. 295: 1155.CrossRefGoogle Scholar
  57. Cohen, S. R., Brooks, B. R., Herndon, R. M., and McKhann, G. Al., 1980, A diagnostic index of active demyelination: Myelin basic protein in cerebrospinal fluid, Ann. Neurol. 8: 25.PubMedCrossRefGoogle Scholar
  58. Cooper. J. R., and Pincus, J. H., 1979, The role of thiamine in nervous tissue, Neurorhem. Res. 4: 223.CrossRefGoogle Scholar
  59. Crawford, C. L., Evans, D. H. L., and Evans, E. M., 1974, Experimental allergic neuritis induced by sensory nerve myelin may provide a model for nonlepromatous leprosy, Nature (London) 251:223 Google Scholar
  60. Comings, J. N., 1953. The cerebral lipids in disseminated sclerosis and in amaurotic idiocy, Brain 76: 551CrossRefGoogle Scholar
  61. Comings, J. N., 1955, Lipid chemistry of the brain in demyelinating diseases, Brain 78: 554.CrossRefGoogle Scholar
  62. Comings, J. N., 1969, The lipid composition of pure myelin in some demyelinating disorders,.V(Uropalh01. lol. 7: 255.Google Scholar
  63. Comings. J. N., and Goodwin, H., 1968, Sphingolipids and phospholipids of myelin in multiple sclerosis. Lancet 2: 664.Google Scholar
  64. Cuzner, M. I., and Davison, A. N., 1973, Changes in cerebral Iysosomal enzyme activity and lipids in multiple sclerosis, J. Neurol. Sri. 19: 29.Google Scholar
  65. Cuzner, M. L., Barnard, R. O., MacGregor, B. J. L., Borshell, N. J., and Davison, A. N., 1976, Myelin composition in acute and chronic multiple sclerosis in relation to cerebral Iysosomal activity, J. Neurol. Sri. 29: 323.Google Scholar
  66. Cuzner, M. I., Davison, A. N., and Rudge, P., 1978, Ptoteolyticenzyme activity of blood leukocytes and cerebrospinal fluid in multiple sclerosis, Ann. Neurol. 4: 337.PubMedCrossRefGoogle Scholar
  67. Dal Canto, M. C., Wisniewski, H. M., Johnson, A. B., Brostoff, S. W., and Raine, C. S., 1975, Vesicular disruption of myelin in atuoimnntne demyelination, J. Neurol. Sri. 24: 313.CrossRefGoogle Scholar
  68. Dastur, I. K., 1977, The nervous system in leprosy, in: Scientific Approaches to Clinical Neurology (E. S. Goldensohn and S. 1I. Appel, eds.), pp. 1456–1193, I.ea and Febiger, Philadelphia.Google Scholar
  69. Davison, A. N., and Wajda, M., 1962, Cerebral lipids in multiple sclerosis, J. Neurochem. 9: 127.CrossRefGoogle Scholar
  70. DeArmom!, S. J., Dcibler, G. E., Bacon, M., Kies, M. W., and Eng, I. F., 1980, A ncurochemical and immunocstochemical study of P., protein in human and bovine nervous systems, J. Histochem. Cytochem. 28: 1275.CrossRefGoogle Scholar
  71. DeVries, G. H., and Norton, W. T., 1974, The lipid composition of axons from bovine brain, J. Neurochem. 22: 259.CrossRefGoogle Scholar
  72. Dreyfus, P. M., 1965, The regional distribution of tratisketolase in the normal and the thiamine deficient nervous system, J. Nieuropathol. Exp. Neurol. 24: 119.CrossRefGoogle Scholar
  73. Einstein, E. R., Dalai, K. B., and Csejtey, J., 1970, Increased protease activity and changes in basic proteins and lipids in multiple sclerosis plaques, J. Neurol. Sri. 11:109.Google Scholar
  74. Einstein, E. R., Csejtey, J., Dalai, K. B., Adams, C. W. M., Bayliss, O. B., and Hallpike, J. F., 1972, Proteolytic activity and basic protein loss in and around multiple sclerosis plaques: Combined biochemical and lustochemical observations, J. Neurochem. 19: 653.PubMedCrossRefGoogle Scholar
  75. Eng, I. F., Chao, F.-C., Gerstl, B., Pratt, D., and Tasaststjerna, M. G., 1968, The maturation of human white matter myelin: Fractionation of the myelin membrane proteins, Biochemistry 7: 1455.CrossRefGoogle Scholar
  76. Eng. I. F., Vander haeghen, J. J., Bignarni, A., and Gerstl, B., 1971, An acidic protein isolated from fibrous astrocvtes. Brain Res. 28: 351.CrossRefGoogle Scholar
  77. Eto, Y., and Suzuki, K., 1971, Fatty acid composition of cholesterol esters in brains of patients with Schilders disease, Gytrgangliosidosis and “Tay-Sachs disease”, and its possible relationship to the ß-position fatty acids of lecithin, J. Neurocheut. 18: 1007.CrossRefGoogle Scholar
  78. Ho, Y., Suzuki, K., and Suzuki, K., 1970, Globoid cell leukodystrophy (Krabbes disease): Isolation of myelin with normal glycolipid composition, J. Lipid Res. 11: 473.Google Scholar
  79. Fto, Y., Suzuki, K., and Suzuki. K., 1971, Lipid composition of rat brain myelin in triethyl tin-induced edema, J. Lipid Res. 12: 570.Google Scholar
  80. Fviatar, 1., Harris, D. R., and Menkes, J. H., 1973, Diffuse sclerosis and Addisons disease: Biochemical studies in gray matter, white matter and myelin, Biochem. Med. 8: 268.CrossRefGoogle Scholar
  81. Fewster, M. E., Mead, J. F., Wollgram, F. J., and Tourtellotte, W. W., 1970, Cholesterol esters in myelin isolated from cerebral white matter of patients with multiple sclerosis, Pror. Soc. Exp. Biol. Med. 133: 795.Google Scholar
  82. Fess-Ster, M. E., Hirano, H., and Mead, J. F., 1976, Lipid composition of myelin in multiple sclerosis, J. Neurol. 231: 119.CrossRefGoogle Scholar
  83. Fonda, J. F., and I.eBeait, J. 1978. Mselinopathte par intoxication oxycarbonee: Neuropathologie ultrasttucturale, Acta Neuropathol. 43: 153.CrossRefGoogle Scholar
  84. Frenkel, E. P., 1971, Studies on a mechanism of the neural lesion of pernicious anemia, J. Clin. Iriiest. 50: 33a.Google Scholar
  85. Fukunm, M., Carpentier, J.-I., Orci, I., Greene, D. A., and Winegrad, A. I., 1978, An alteration in ttiternodal inyelin membrane structure in large sciatic nerve fibers in rats with acute streptozotocin diabetes and impaired nerve conduction velocity, Diabetologia 15: 65.CrossRefGoogle Scholar
  86. Gerstl, B., 1972, The biochemistry of demyelination and the demyeiiHating diseases, in: Biochemical Aspects of Nervous Diseases (J. N. Cumings, cd.), pp. 69–110, Plenum Press, New York.Google Scholar
  87. Gerstl, B., Kahnke, M. J., Smith, J. K., “Tavasts”[jerna, M. G., and Hayman, R. B., 1961, Brain lipids in multiple sclerosis and other diseases, Brain 84: 310.Google Scholar
  88. Gerstl, B., Tavaststjerna, M. G., Hayman, R. B., Smith, J. K., and Eng, L. F., 1963, Lipid studies of white matter and thalamus of human brains, J. Neurochem. 10: 889.PubMedCrossRefGoogle Scholar
  89. Gerstl, B., Malamud, M., Hayman, R. B., and Bond, P. R., 1965, Morphological and neurochemical study of Pelizaeus-Merzbacher disease, J. Neurol. Neurosurg. Psychiatry 28: 540.Google Scholar
  90. Gerstl, B., Rubinstein, I. J., Eng, L. F., and 1“avaststjerna”, M., 1966, A neurochemical study of a case of sadaWopbilic leukodystrophy, Arch. Neurol. 15: 603.Google Scholar
  91. Gerstl, B., Malamud, N., Eng, L. F., and Hayman, R. B., 1967, Lipid alterations in human brains in phenylketohuria, Neurology 17: 51.PubMedCrossRefGoogle Scholar
  92. Gerstl, B., Eng, I. F., Tavaststjerna, M. G., Smith, J. K., and Kruse, S. L., 1970, Lipids and proteins in multiple sclerosis white matter, J. Neurochem. 17: 667.CrossRefGoogle Scholar
  93. Ginsburg, M. D., 1980, Carbon monoxide, in Experimental and Clinical Neurotoxicology (P. S. Spencer and H. H. Schaumburg, eds.), pp. 374–394, Williams and Wilkins, Baltimore and London.Google Scholar
  94. Goldberg, P., 1974, Multiple sclerosis: Vitamin D and calcium as environmental determinants of prevalence. I. Sunlight, dietary factors and epidemiology, Int. J. Environ. Stud. 6: 19.CrossRefGoogle Scholar
  95. Goldman, J. E., Schaatnburg, H. H., and Norton, W. T., 1978, Isolation and characterization of glial filaments from human brain, J. Cell Biol. 78: 126.CrossRefGoogle Scholar
  96. Goldstein, N. P., McCall, J. T., and Dyck, P. J., 1973, Metal neuropathology, in: Peripheral Neuropathy ( P. J. Dyck, P. K. Thomas, and E. H. Lambert, eds.), pp. 1227–1262, W. B. Saunders, Philadelphia.Google Scholar
  97. Gopfert, E., Pytlik, S., and Dehuch, II., 1980,2,3-Cyclic nucleotide 3-phosphohydrolase and lipids of myelin from multiple sclerosis and normal brain, J. Neurochem. 34: 732.Google Scholar
  98. Griffin, J. W., and Price, D. I., 1980, Proximal axonopathies induced by toxic chemicals, in: Experimental and Clinical Neurotoxicology ( P. S. Spencer and H. H. Schaumburg, eds.), pp. 161–178, Williams and Wilkins, Baltimore and London.Google Scholar
  99. Hallpike, J. F., 1972, Enzyme and protein changes in myelin breakdown and multiple sclerosis, Frog. Histochem. Cytoehem. 3: 1.Google Scholar
  100. Hirsch, II. E., 1980, Pathogenesis of demyelination in multiple sclerosis: Contributions of microanalysis, Prog. Clin. Biol. Res. 39: 11.PubMedGoogle Scholar
  101. Hirsch, H. E., 1981, Proteinases and demyelination, J. Histochem. Cytochem. 29: 425.PubMedCrossRefGoogle Scholar
  102. Hirsch, H. E., and Parks, M. E., 1979, A thiol proteinase highly elevated in and around the plaques of multiple sclerosis: Some biochemical parameters of plaque activity and progression, J. Neurochem. 32: 505.PubMedCrossRefGoogle Scholar
  103. Hirsch, II. E., Duquette, P., and Parks, M. E., 1976, The quantitative histochemistry of multiple sclerosis plaques: Acid proteinase and other acid hydrolases, J. Neurochem. 26: 505.PubMedCrossRefGoogle Scholar
  104. Hirsch, H. E., Blanco, C. E., and Parks, M. E., 1981, Fibrinolytic activity of plaques and white matter in multiple sclerosis, J. Neuropathol. Exp. Neural. 40: 271.CrossRefGoogle Scholar
  105. Hogan, E. L., Joseph, K. C., Hurt, J. P., and Krigman, M. R., 1972, Schilders diffuse sclerosis: A biochemical and ultrastructural study of myelinoclastic demyelination, Acta Neuropathol. 20: 85.PubMedCrossRefGoogle Scholar
  106. Horrocks, L. A., Spanner, S., Mozzi, R., Fu, S. C., DAmato, R. A., and Krakowska, S., 1978, Plasmalo-genase is elevated in early demyelinating lesions, Adv. Exp. Med. Biol. 100: 423.CrossRefGoogle Scholar
  107. Hughes, J. V., and Johnson, T. C., 1978, Abnormal amino acid metabolism and brain protein synthesis during neural development, Neurochem. Res. 3: 381.PubMedCrossRefGoogle Scholar
  108. Huszak, I., 1972, Biochemical aspects of multiple sclerosis, in: Handbook of Neurochemistry, Vol. 7 (A. Lajtha, rd.), pp. 46–92, Plenum Press, New York.Google Scholar
  109. Igarashi, M., Schaumburg, H. H., Powers, J., Kishimoto, Y., Kolodny, E. H., and Suzuki, K., 1976, Fatty acid abnormality in adrenoleukodystrophy, J. Neurochem. 26: 851.PubMedCrossRefGoogle Scholar
  110. Itokawa, Y., and Cooper, J. R., 1970, Ion movements and thiamine. II. The release of the vitamin from membrane fragments, Biochim. Biophys. Acta 196: 274.PubMedCrossRefGoogle Scholar
  111. Itoyama, Y., Sternberger, N. H., Webster, H. de F., Quarles, R. H., Cohen, S. R., and Richardson, E. P., Jr., 1980, Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions, Ann. Neurol. 7: 167.PubMedCrossRefGoogle Scholar
  112. Jatzkewitz, H., 1958, Zwei Typcn von Cerebrosid-schwefelsäurecstern als sog. “Prälipoide” und Speichersubstanzen bei der Leukodystrophie, typ Scholtz (nietachromatische Form der diffusen Sklerose), Z. Physiol. Chem. 311: 279.CrossRefGoogle Scholar
  113. Jervis, G. A., 1977, Pheny Iketonuria, in: Seientific Approaches to Clinical Neurology ( E. S. Goldensohn and S. H. Appel, eds.), pp. 26–45, I-ea and Febiger, Philadelphia.Google Scholar
  114. Johnson, R. C., and Shah, J. N., 1973, Effect of hyperphcny]alaninemia on fatty acid composition of lipids of rat brain myelin, J. Neurochem. 21: 1225.PubMedCrossRefGoogle Scholar
  115. Kagan, B. L., Finkelstein, A., and Colomhini, M., 1980, Diptheria toxic fragment forms large pores in phospholipid bilayer membranes, Proc. Natl. Acad. Sci. U. S. A. 78: 4950.CrossRefGoogle Scholar
  116. Kamoshita, S., Rapin, I., Suzuki, K., and Suzuki, K., 1968, Spongy degeneration of the brain: A chemical study of two cases including isolation and characterization of myelin, Neurology 18:975.Google Scholar
  117. Kamoshita, S., Aron, A. M., Suzuki, K., and Suzuki, K., 1969, Infantile Niemann- Pickdisease: A chemical study with isolation and characterization of membranous cytoplasmic bodies and myelin, Am. J. Dis. Child. 117: 379.Google Scholar
  118. Kaplan, J. G., 1980, Neurotoxicity of selected biological toxins, in: Experimental and Clinical Neurotoxicology ( P. S. Spencer and H. H. Schaumburg, eds.), pp. 631–148, Williams and Wilkins, Baltimore and London.Google Scholar
  119. Kimbrough, R. D., and Gaines, T. B., 1971, Hexachlorophene effects on the rat brain: Study of high doses by light and electron microscopy, Arch. Environ. Health 23: 114.PubMedGoogle Scholar
  120. Kishimoto, Y., Radin, N. S., Tourte11otte, W. W., Parker, J. H., and Itaboshi, H. H., 1967, Gangliosides and glycerophospholipids in multiple sclerosis white matter, Arch. Neurol. 16: 44.CrossRefGoogle Scholar
  121. Kishimoto, Y., Moser, H. W., and Suzuki, K., 1983, Neurochemistry of adrenoleukodystrophy, in: Handbook of Neurochemistry,Vol. 3, 2nd ed. (A. Lajtha, ed.), Plenum Press, New York (in press).Google Scholar
  122. Klenk, E., and Kahlke, W., 1963, fiber das Vorkommen der cansäure (Phytansäure) in den Cholesterinestern and anderen Lipoidfraktionen der organe bei einem Krankheitsfall unbekannter Genese [Verdacht auf Heredopathica atactica polyneuritiformis (Rclsum-syndrom)J, Z. Physiol. Chem. 333: 133.Google Scholar
  123. Knox, W. E., 1972, Phenylketonuria, in: The Metabolic Basis of Inherited Disease, 3rd ed. ( J. B. Stanbury, J. B. Wyngaarden, and D. S. Frederickson, eds.), pp. 266–295, McGraw-Hill, New York.Google Scholar
  124. Kolodny, E. H., and Moser, H. W., 1983, Sulfatide lipidosis: Metachromatic leukodystrophy, in: The Metabolic Basis of Inherited Disease ( J. B. Stanbury, J. B. Wyngaardcn, D. S. Frederickson, and M. S. Brown, eds.), pp. 881–905, McGraw-Hill, New York.Google Scholar
  125. Komiya, Y., and Kasahara, M., 1971, 2,3-Cyclic nucleotide 3-phosphohydrolase activity in myelin fractions from one patient with Schilders disease, J. Biochem. (Tokyo) 70: 371.Google Scholar
  126. Krigman, M. R., Bouldin, T. W., and Mushak, P., 1980, Lead, in: Experimental and Clinical Neurotoxicology ( P. S. Spencer and H. Schaumburg, eds.), pp. 490–507, Williams and Wilkins, Baltimore and London.Google Scholar
  127. LaMpert, P. W., 1969, Mechanism of demyclination in experimental allergic neuritis: Electron microscopic studies, Lab. Invest. 20: 127.Google Scholar
  128. LaMpert, P. W., and Schochet, S. S., 1968, Electron microscopic observations on experimental spongy degeneration of the cerebellar white matter, J. Neuropathol. Exp. Neurol. 27: 210.CrossRefGoogle Scholar
  129. LaPresle, J., and Fardeau, M., 1967, The central nervous system and carbon monoxide poisoning, Prog. Brain Res. 24: 31.CrossRefGoogle Scholar
  130. Larson, D. L., 1968, Studies show hexachlorophene causes burn syndrome, Hospitals 42: 63.Google Scholar
  131. Lees, M. B., Sapirstein, V. S., Reiss, D. S., and Kolodny, E. H., 1980, Carbonic anhydrase and 2,3-cyclic nucleotide 3-phosphohydrolase activity in normal human brain and in demyelinating diseases, Neurology 30: 719.PubMedCrossRefGoogle Scholar
  132. Lockhart, J. D., 1972, How toxic is hexachlorophene?, Pediatrics 50: 229.PubMedGoogle Scholar
  133. Lumsden, C., 1950, Cyanide leucoencephalopathy in rats and observations on the vascular and ferment hypothesis of demyelinating diseases, J. Neural. Neurosurg. Psychiatry 113: 1.CrossRefGoogle Scholar
  134. Lumsden, C. E., 1972, The clinical pathology of multiple sclerosis, in: Multiple Sclerosis, a Reappraisal, 2nd ed. ( D. McAlphine, C. E. Lumsden, and E. D. Acheson, eds.), pp. 311–621, Churchhill Livingstone, Edinburgh.Google Scholar
  135. Lyon, G., and Goffinet, A., 1980, Genetics and pathology of dysmyelinating disorders of the central nervous system: Comparison to animal models, in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), INSERM Symposium No. 14, pp. 33–46, Elsevier/North-Holland, Amsterdam.Google Scholar
  136. MacBrinn, M. C., and OBrien, J. S., 1968, Lipid composition of the nervous system in Refsums disease, J. Lipid Res. 9: 552.PubMedGoogle Scholar
  137. Malone, M. J., Sakuragawa, M., and Szoke, M., 1975, A comparative study of myelin fractions from metachromatic and globoid leucodystrophies, Neurology 9: 827.CrossRefGoogle Scholar
  138. Martin-Bouyer, G., Toga, M., Leberton, R., Stolley, P. D., and Lockhart, J., 1982, Outbreak of accidental hexachlorophene poisoning in France, Lancet 1: 91.PubMedCrossRefGoogle Scholar
  139. Matthieu, J.-M., Zimmerman, A. W., Webster, H., de F., Ulsamer, A. G., Brady, R. O., and Quarles, R. H., 1974, Hexachlorophene intoxication: Characterization of myelin and myelin related fractions in the rat during early postnatal development, Exp. Neural. 45: 558.CrossRefGoogle Scholar
  140. McCandless, D. W., Curley, A. D., and Cassidy, C. E., 1976, Thiamin deficiency and the pentose phosphate cycle in rats: Intracerebral mechanisms, J. Nutr. 106: 1144.Google Scholar
  141. McKeown, S. R., and Allen, I. V., 1978, The cellular origin of lysosomal enzymes in the plaque in multiple sclerosis: A combined histological and biochemical study, Neuropathol. Appl. Neurobiol. 4: 471.PubMedCrossRefGoogle Scholar
  142. McKhann, G. M., 1982, Multiple sclerosis, Anon. Rev. Neurosci. 5:219.Google Scholar
  143. Mehl, E., and Jatzkewitz, H., 1965, Evidence for the genetic block in metachrornatic leukodystrophy (ML), Biocheu. Biophys. Res. Commun. 19: 407.CrossRefGoogle Scholar
  144. Mehl, E., and Jatzkewitz, H., 1968, Cerebroside 3-sulfate as a physiological substrate of arylsulfatase A, Biochim. Biophys. Acta 151: 619.PubMedCrossRefGoogle Scholar
  145. Menkcs, J. H., 1966, Central lipids in phenylketonuria, Pediatrics 37: 967.Google Scholar
  146. Morel, P., Bornstein, M. B., and Raine, C. S., 1981, Diseases involving myelin, in: Basic Neurochemistry, 3rd ed. ( G. J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), pp. 641–659, Little, Brown, Boston.Google Scholar
  147. Moser, H. W., Moser, A. B., Kawamura, N., Murphy, J., Suzuki, K., Schaumburg, H., and Kishimoto, Y., 1980, Adrenoleukodystrophy: Elevated C96 fatty acid in cultured skin fibroblasts, Ann. Neurol. 7: 542.PubMedCrossRefGoogle Scholar
  148. Moser, H. W., Moser, A. B., Frayer, K. K., Chen, W., Schulman, J. D., ONeill, B. P., and Kishiroto, Y., 1981, Adrenoleukodystrophy: Increased plasma content of saturated very long chain fatty acids, Neurology 31: 1241.PubMedCrossRefGoogle Scholar
  149. Neu, I., and Woelk, H., 1982, Investigations of the lipid metabolism of the white matter in multiple sclerosis: Changes in glycero-phosphatides and lipid-splitting enzymes, Neurochem. Res. 7: 727.PubMedCrossRefGoogle Scholar
  150. Newcombe, J., Glynn, P., and Cuzner, M. L., 1982, "[lie immunological identification of brain proteins on cellulose nitrate in human demyelinating disease, J. Neurochem. 38: 267.Google Scholar
  151. Norton, W. T., 1977, The myelin sheath, in: Scientific Approaches to Clinical Neurology (I:. S. Goldensohn and S. H. Appel, eds.), pp. 259–298, Lea and Febigcr, Philadelphia.Google Scholar
  152. Norton, W. T., and Poduslo, S. E., 1966, Metachromatic leukodystrophy: Chemically abnormal myelin and cerebral biopsy and studies of three siblings, in: Variation in the Chemical Composition of the Nervous System (G. B. Ansell, cd.), p. 82, Pet,gamon, Oxford.Google Scholar
  153. Norton, NV. E., and Poduslo, S. E., 1982, Biochemical studies of tnetachromatis leukodystrophy in three siblings, Acta Neuropathol. (Berlin) 57: 188.Google Scholar
  154. Norton, W. T., Poduslo, S. E., and Suzuki, K., 1966, Subacute sclerosing leukoencephalitis. II. Chemical studies including abnormal myelin and an abnormal ganglioside pattern, J. Neuropathol. Exp. Neural. 25: 582.CrossRefGoogle Scholar
  155. Norton, W. T., Abe, T., Poduslo, S. E., and DeVries, G. H., 1975, The lipid composition of isolated brain cells and axons, J. Neurosci. Res. 1: 57.PubMedCrossRefGoogle Scholar
  156. OBrien, J. S., 1965, The stability of the myelin membrane, Science 147: 1099.CrossRefGoogle Scholar
  157. OBrien, J. S., and Sampson, E. I., 1965, Myelin membrane: A molecular abnormal ity, Science 150: 1613.Google Scholar
  158. Ogino, T., and Suzuki, K., 1981, Specificities of Istintan and rat brain enzymes of cholesterol ester metabolism toward very long chain fatty acids: Implication for biochemical pathogenesis of adrenoleukodystrophy, J. Neurochem. 36: 776.PubMedCrossRefGoogle Scholar
  159. Ogino, T., Schaumburg, H. H., Suzuki, K., Kishimoto, Y., and Moser, A., 1978, Metabolic studies of adrenoleukodystrophy, Adv. Exp. Med. Biol. 100: 601.PubMedCrossRefGoogle Scholar
  160. Peterson, C. M., Tsairis, P., Ohni.shi, A.,, Y. S., Grady, R., Cerami, A., and Dyck, P. S., 1974, Sodium cyanate induced polyneuropathy in patients with sickle cell disease, Amt. Intern. lied. 81: 152.Google Scholar
  161. Pincus, J. II., and Wells, K., 1972, Regional distribution of thiamine-dependent enzymes in normal and thiamine-deficient brain, Exp. Neurol. 37: 495.PubMedCrossRefGoogle Scholar
  162. Plaitakis, A., van Woert, M. H., Hwang, E. C., and Berl, S., 1978. The effect of acute thiamine deficiency on brain tryptophan, serotonin and 5-hydroxyindoleacetic acid, J. Neurochem. 31: 1087.PubMedCrossRefGoogle Scholar
  163. Plaitakis, A., Nicklas, W. J., and Berl, S., 1979, Alterations in uptake and metabolism of asparate and glutamate in brain of thiamine deficient animals, Brain Res. 171: 489.PubMedCrossRefGoogle Scholar
  164. Pleasure, D. B., Feldman, B., and Prockop, D. J., 1973, Diphtheria toxin inhibits the synthesis of myelin proteolipid and basic proteins by peripheral nerve in vitro, J. Neurochem. 20: 81.PubMedCrossRefGoogle Scholar
  165. Plum, C. M., and Hansen, S. E., 1960, The cerebral lipids ni multiple sclerosis, Acta P.sychiatr. Neurol. Scand. Suppl. 141: 35.Google Scholar
  166. Poser, C. M., 1968, Diseases of the myelin sheath, in: Pathology of the Nervous System, Vol. 1 ( J. F. Minckler, ed.), pp. 767–820, McGraw-Hill, New York.Google Scholar
  167. Prensky, A. L., Carr, S., and Moser, II. W1., 1968, Development of myelin in inherited disorders of amino acid metabolism, Arch. Neurol. 19: 552.PubMedCrossRefGoogle Scholar
  168. Price, P., and Cuzner, M. I., 1979, Proteinase inhibitors in cerebrospinal fluid in multiple sclerosis, J. Neurol. Sci. 42: 251.PubMedCrossRefGoogle Scholar
  169. Prockop, L. D., and Pleasure, D. E., 1977, Diabetic neuropathy, in: Scientific Approaches to Clinical Neurology ( E. S. Goldensohn and S. H. Appel, eds.), pp. 1437–1455, Lea and Febinger, Philadelphia.Google Scholar
  170. Raise. C. S., Scheinbetg, I., and Waltz, J. M., 1981, Multiple sclerosis: Oligodendrocyte survival and proliferation in an active established lesion, Lob. Incest. 45: 531.Google Scholar
  171. Ramsey, R. B., and Davison, A. N., 1971. Steryl esters and their relationship to normal and diseased human central nervous system, J. Lipid Res. 15: 219.Google Scholar
  172. Ramsey, R. B., Batik, N. I., Scott, T., and Davison, A. N., 1976, Neurochemical findings in ach enoleukodystrophy, J. Neurol. Sci. 29: 277.PubMedCrossRefGoogle Scholar
  173. Rauch, H. C., and Einstein. E. R., 1974, Specific brain proteins: A biochemical and immunological review, Re - -. Neurosci. 1: 283.Google Scholar
  174. Reiss, D. S., Lott, I., and Sapirstein, V. S., 1981, Altered Na, K At Pase in spongy degeneration (Canavans disease), Trans. Ant. Soc. Neurochem. 12:192.Google Scholar
  175. Riekkinen, P. J., Clausen. J., Frey, H. J., Fog, T., and Rinne, U. K., 1970, Acid proteinase activity of white matter and plaques in multiple sclerosis,,4cta Neurol St - and. 46: 349.Google Scholar
  176. Riekkinen, P. J., Palo, J., Arstila, A. U., Savolainen, H. J., Rinne, Ii. K., Kivalo, E. K., and Frey, H., 1971, Protein composition of multiple sclerosis myelin, Arch. Neurol. 24: 545.PubMedCrossRefGoogle Scholar
  177. Riekkinen, P. J., Rinne, U. K., Arstila, A. U. Kurihara, T., and Pelliniemi, T. T., 1972, Studies on the pathogenesis of multiple sclerosis: 23-Cyclic nucleotide 3-phosphohydrolase as a market of demyelination and correlation of findings with lysosomal changes, J. Neural. Sci. 15: 113.Google Scholar
  178. Riekkinen, P. J., Rinne, U. K., Arstila, A. U., and Royua, NI., 1973, Chemical pathology of multiple sclerosis, Ann. Clint. Res. 4: 345.Google Scholar
  179. Sabri, M. 1. and Spencer, P. S., 1980, Toxic distal axonopathy: Biochemical studies and hypothetical mechanisms, in: Experimental and Clinical Neurotoxicology ( P. S. Spencer and H. H. Schaumburg, eds.), pp. 206–219, NVilliams and Wilkins, Baltimore and London.Google Scholar
  180. Schneck. I., Adachi, M., and Volk, B. W., 1971, Congenital failure of myelinization: Pelizaeus Merzbacher disease?, Neurology 21: 817.CrossRefGoogle Scholar
  181. Schoher, R., Itoyama, Y., Stem N. 11., Trapp, B. D., Richardson, E. P., Asbury, A. K., Quarles, R. H., and Webster, H. de F., 1981, Immttnocytochemical study of P0 glycoprotein, P1 and P, basic proteins, and myelin-associated glycoprotein (M AG) in lesions of idiopathic polyneuritis, Neuropatimol. Appl. Neurobiol. 7. 121.Google Scholar
  182. Shah, S. N., 1979, Fatty acid composition of lipids of human brain myelin and synaptosomes: Changes in phenylketonuria and Downs syndrome, E r. J. Biochem. 10: 177.Google Scholar
  183. Shah, S. N., and Johnson, R. C., 1980, Activity levels of cholesterol ester metabolizing enzymes in brain in multiple sclerosis: Correlation with cholesterol ester concentrations, Exp. Neurol. 68: 601.PubMedCrossRefGoogle Scholar
  184. Shah, S. N., Peterson, N. A., and McKean, C. M., I 972a, Impaired myelin formation in experimental hyperphenylalaninaemia, J. Neurochem. 19: 479.Google Scholar
  185. Shah, S. N., Peterson, N. A., and McKean, C. M., 1972b, Lipid composition of human cerebral white matter and myelin in phenylketonuria, J. Neurochem. 19: 2369.PubMedCrossRefGoogle Scholar
  186. Shuman, R. M., Leech. R. W., and Alvord, E. C., Jr., 1974, Neurotoxicity of hexachlorophene in the human. I. A clinicopathologic study of 248 children, Pediatrics 54: 689.PubMedGoogle Scholar
  187. Shuman, R. M., Leech, R. W., and Alord, E. C., Jr., 1975, Neurotoxicity of hexachlorophene in humans. Il. A clinicopathological study of 46 premature infants, Arch. Neurol. 32: 320.PubMedCrossRefGoogle Scholar
  188. Singh, I., Moser, H. W., Moser, A. B., and Kmsitimoto, Y., 1981, Adrenoleukodystn)phy: Impaired oxidation of long chain fatty acids in cultured skin fibroblasts and adrenal cortex, Bioc hem. Biophys. Res. Commnt. 102: 1223.CrossRefGoogle Scholar
  189. Small, D. H., and Carnegie, P. R., 1981, Myelopathy associated with vitamin B-12 deficiency: New approaches to an old problem, Trends Neurosci. 4: X.Google Scholar
  190. Smith, J. K., Gerstl, B., Tavaststjerna, M., and Porter, W. R., 1961, A case of sudanophilic diffuse sclerosis with study of the brain lipids, Neurology 11: 395.CrossRefGoogle Scholar
  191. Smith, M. E., 1973, Studies of the mechanism of demyelination: Trimethyl tin-induced demyelination, J. Neurochem. 21: 357.PubMedCrossRefGoogle Scholar
  192. Smith, M. E., 1980, Proteinase inhibitors and the suppression of FAE, in: The Suppression of Experimental Allergic Encepltalornyeliti.s and Multiple Sclerosis ( A. N. Davison and M. I. Cuzner, eds.), pp. 211–226, Academic Press, London.Google Scholar
  193. Smith, M. E., and Amaducci, L. A., 1982, Observations on the effects of protease inhibitors on the suppression of experimental allergic encephalomyelitis, Neurochem. Res. 7: 541.PubMedCrossRefGoogle Scholar
  194. Smith, M. E., and Sedgewick, L. M., 1975. Studies of the mechanism of demyelination: Regional differences in myelin stability in vitro, J. Neurochem. 24: 763.PubMedGoogle Scholar
  195. Sprinkle, T. J., and McKhann, G. M., 1978, Activity of 2,3-cyclic-nucleotide 3-phosphodiesterase in cerebrospinal fluid of patients with demyelinating disorders, Neurosci. Lett. 7:203.Google Scholar
  196. Spritz, N., Singh, H., and Marinan, B., 1975, Metabolism of peripheral nerve myelin in experimental diabetes, J. Clin. Invest. 55:1049.PubMedCrossRefGoogle Scholar
  197. Stark, G., 1972, Pelizaeus-Merzliacher disease, Deis. Med. Child. Neurol. 14:806.Google Scholar
  198. Steinberg, D., 1983, Phytanic acid storage disease (Refsums disease), in: The Metabolic Basis of Inherited Disease ( J. B. Stanbury, J. B. Wyngaarden, D. S. Frederickson, J. L. Goldstein, and M. S. Brown, eds.), pp. 731–747, McGraw-Hill, New York.Google Scholar
  199. Stumpf, D., Neuwelt, E., Austin, J., and Kohler, P., 1971, Metachromatic leukodystrophy (MI.D). X. Immunological studies of the abnormal sulfatase A, Arch. Neurol. 25: 427.PubMedCrossRefGoogle Scholar
  200. Suzuki, K., 1969, Lipid composition of purified myelin in various white matter diseases: A hypothesis of chemical abnormality of myelin in nonspecific demyelination, in: Proceedings of a Symposium of Selected Topics in Human Chemical Neuropathology, Rite. Patol. Nerz. Ment., pp. 87-95.Google Scholar
  201. Suzuki, K., 1978, Biochemistry of myelin disorders, in: Physiology and Pathobiology of Axons ( S. G. Waxman, ed.), pp. 337–347, Raven Press, New York.Google Scholar
  202. Suzuki, K., and Suzuki, K., 1973a, Disorders of sphingolipid metabolism, in: Biology of Brain DysfunctionVol. 2 (G. E. Gaull ed.), pp. 1-73, Plenum Press, New York.Google Scholar
  203. Suzuki, K., and Suzuki, K., 19736, Globoid cell leukodystrophy (Krabbes disease), in: Lysosomes andStorage Diseases (11. G. Hers and F. van Hoof, eds.), pp. 395-410, Academic Press, New York.Google Scholar
  204. Suzuki, K., and Suzuki, Y., 1970, Globoid cell leukodystrophy (Krabbes disease): Deficiency of galactocerebroside ß-galactosidase, Proc. Natl. Acad. Sci. U.S.A. 66:302.Google Scholar
  205. Suzuki, K., and Suzuki, Y., 1983, Galactosylceramide lipidosis: Globoid cell leukodystrophy (Krabbes disease), in: The Metabolic Basis of Inherited Disease ( J. B. Stanbury, J. B. Wyngaarden, D. S. Frederickson, J. I. Goldstein, and M. S. Brown, eds.), pp. 857–880, McGraw-Hill, New York.Google Scholar
  206. Suzuki, K., Suzuki, K., and Chen, G. C., 1966, Metachromatic leucodystrophy: Isolation and chemical analysis of metachromatic granules, Science 151: 1231.PubMedCrossRefGoogle Scholar
  207. Suzuki, K., Suzuki, K., and Chen, G. C., 1967, Isolation and chemical characterization of metachromatic granules from a brain with metachromatic leukodystrophy, J. Neuropathol. Exp. Neurol. 26: 537.PubMedCrossRefGoogle Scholar
  208. Suzuki, K., Suzuki, K., and Kamoshita, S., 1969, Chemical pathology of Ghti-gangliosidosis (generalized gangliosidosis), J. Neuropathol. Exp. Neurol. 28:25.Google Scholar
  209. Suzuki, K., Kamoshita, S., Eto, Y., Tourtellotte, W. W., and Gonatas, J. O., 1973, Myelin in multiple sclerosis, Arch. Neurol. 28: 293.PubMedCrossRefGoogle Scholar
  210. Suzuki, Y., and Suzuki, K., 1971, Krabbes globoid cell leukodystrophy: Deficiency of galactocerebrosidase in serum, leukocytes and fibroblasts, Science 171: 73.PubMedCrossRefGoogle Scholar
  211. Suzuki, Y., Tucker, S. H., Rorke, I. B., and Suzuki, K., 1970, Ultrastructural and biochemical studies of Schilders disease. II. Biochemistry, J. Neuropathol. Exp. Neurol. 29: 405.PubMedCrossRefGoogle Scholar
  212. Svennerholm, I., 1963, Some aspects of the biochemical changes in leucodystrophy, in: Brain Lipids and Lipoproteins, and the Leukodystrophies(J. Folch-Pi and H. Bauer, eds.), pp. 104–119, Elsevier, Amsterdam.Google Scholar
  213. Svennerholm, L., Vanier, M. T., and Mansson, J. E., 1980, Krabbe disease: A galactosylsphingosine (psychosine) lipidosis, J. Lipid Res. 21: 53.PubMedGoogle Scholar
  214. Swank, R. I., 1961, A Biochemical Approach to Multiple.Sclerosis, Charles C Thomas, Springfield, Illinois.Google Scholar
  215. Tabira, T., Cullen, M. J., Reier, P., and Webster, H. dc F., 1978, An experimental analysis of interlamellar tight junctions in amphibian and mammalian C.N.S. myelin, J. Neurocytol. 7: 489.Google Scholar
  216. Tellez, I., Johnson, D., Nagel, R. I., and Cerami, A., 1979, Neurotoxicity of sodium cyanatc New pathological and ultrastructural observations in Maccaca nemestrina, Acta Neuropathol (Berlin) 47: 75.CrossRefGoogle Scholar
  217. Tellez-Nagel, I., Korthals, J. K., Vlassara, H. V., and Cerami, A., 1977, An ultrastructural study of chronic sodium cyanate-induced neuropathy, J. Neuropathol. Exp. Neurobiol. 36:351.CrossRefGoogle Scholar
  218. Thomas, P. K., and Eliasson, S. G., 1975, Diabetic neuropathy, in:Peripheral Neuropathy (P. J. Dyck P. K. Thomas, and E. H. Lambert, eds.), p. 956, W. B. Saunders, Philadelphia.Google Scholar
  219. Thomas, P. K., and I.ascelles, R. G., 1966, The pathology of diabetic neuropathy, Q. J. Med. 35:489. Thompson, R. H. S., 1973, Fatty acid metabolism in multiple sclerosis, Biochem. Soc. Sy nap. 35: 103.Google Scholar
  220. Toews, A. D., Krigman, M. R., Thomas, D. J., and Morel], P., 1980, Effect of inorganic lead exposure of niyelination in the rat, Neurochem. Res. 5:605.Google Scholar
  221. Tourian, A., and Sidbury, J. B., 1983, Phenylketonuria and hyperphenylalaninemia, in: The Metabolic Basis of Inherited Disease, 5th ed. ( J. B. Stanhury, J. B. Wyngaarden, D. S. Frederickson, J. I. Goldstein, and M. S. Brown, eds.), pp. 270–286, McGraw-Hill, New York.Google Scholar
  222. Tsuchiya, Y., Numabe, T., and Yokoi, S., 1970, Neuropathological and neurochemical studies of three cases of sudanophilic leukodystrophy, Acta Neuropathol. 16: 353.PubMedCrossRefGoogle Scholar
  223. Vanier, 11\1., and Svennerholm, L., 1976, Chemical pathology of Krabbe disease: The occurrence of psychosine and other neutral sphingoglycolipids, Adv. Exp. Med. Biol. 68: 115.CrossRefGoogle Scholar
  224. Victor, M., and Silby, H., 1977, Thiamine deficiency, in: Scientific Approaches to Clinical Neurology ( E. S. Goldensohn and S. II. Appel, eds.), pp. 204–226, Lea and Febiger, Philadelphia.Google Scholar
  225. Vicaqua, R. J., Myerson, R. M., Prescott, D. J., and Rabinowitz, J. L., 1966, Abnormal propionicmethylmalonic-succinic acid metabolism in vitamin B12deficiency and its possible relationship to the neurological syndrome of pernicious anemia, Am. J. Med. Sri. 251: 507.CrossRefGoogle Scholar
  226. Waksman, B. H., 1981, Current trends in multiple sclerosis research, lmmwtol. Today 2: 87.CrossRefGoogle Scholar
  227. Waxman, S. G., and Ritchie, J. M. (eds.), 1981, Demvelinating Diseases: Basic and Clinical Electrophysiology, Raven Press, New York.Google Scholar
  228. Watanabe, I., 1980, Organotins (triethyltin), in: Experimental and Clinical Neurotoxicology ( P. S. Spencer and H. H. Schaumburg, eds.), pp. 545–557, Williams and Wilkins, Baltimore and London.Google Scholar
  229. Llatanabe, I., McCa man, R., Dyken, P., and Zeman, W., 1969, Absence of cerebral myelin sheaths in a case of presumed Pelizaeus-Merzbacher disease, J. Neuropathol. Exp. Neurol. 28: 243.CrossRefGoogle Scholar
  230. Watanabe, I., Patel, V., Goebel, H. H., Siakotos, A. N., Zeman, W., DeMyer, W., and Dyer, J. S., 1972, Early lesion of Pelizaeus-Merzbacher disease: Electron microscopic and biochemical study, J. Neuropathol. Exp. Neural. 32: 313.CrossRefGoogle Scholar
  231. Wen. G. Y., Wisniewski, H. M., Shek, J. W., Loo, Y. H., and Fulton, T. R., 1980, Neuropathology of phenylacetate poisoning in rats: An experimental model of phenylketonuria, Ann. Neurol. 7: 557.CrossRefGoogle Scholar
  232. Wender, M., Adamczewska, Z., and Wajgt, A., 1973, Cerebral lipids in a case with a clinically silent isolated plaque of the multiple sclerosis type, Eta. Neurol. 9: 21.Google Scholar
  233. Wender, M., Filipek-Wender, H., and Stanislawska, J., 1974, Cholesteryl esters of the brain in demyelinating diseases, Clin. Chico. Acta 54: 269.CrossRefGoogle Scholar
  234. Whitaker, J. N., 1977. Myelin encephalitogenic protein fragments in cerebrospinal fluid of persons with multiple sclerosis, Neurology 27: 911.PubMedCrossRefGoogle Scholar
  235. Whitaker, J. N., 1978, The distribution of myelin basic protein in central nervous system lesions of multiple sclerosis and acute experimental allergic encephalomyelitis, Attn. Neural. 3: 291.CrossRefGoogle Scholar
  236. Whitaker, J. N., Lisak, R. P., Bashir, R. M., Fitch, O. H., Seyer, J. M., Krance, R., Lawrence, J. A., Chien, I. f., and OSullivan, P., 1980, Immunoreactive myelin basic protein in the cerebrosphinal fluid in neurological disorders, Ann. Neural. 7: 58.CrossRefGoogle Scholar
  237. Winterfeld, M., and Debuch, H., 1977, Untersuchungen an Glycerinphospholipiden aus weisser Substanz. von MS- and Normalgehirnen, J. Neural. Sci. 215: 261.Google Scholar
  238. Wisniewski, H. M., and Bloom, B. R., I975a, Primary demyelination as a nonspecific consequence of a cell mediated immune reaction, J. Exp. Med. 141: 346.Google Scholar
  239. Wisniewski, H. M., and Bloom, B. R., 1975b, Experimental allergic optic neuritis (EAON) in the rabbit, J. Neurol. Sci. 24: 257.PubMedCrossRefGoogle Scholar
  240. Woclk, H., and Boni, P., 1973a, Glycerinophosphatide and Sphingolipide der normalen weissen Substanz bei der Multiplen Sklerose, Z. Neurol. 205: 243.CrossRefGoogle Scholar
  241. Woelk, H., and Boni, P., 19736, Lipid and fatty acid composition of myelin purified from normal and MS brains, Fur. Neurol. 10: 250.Google Scholar
  242. Wolfgram, F., 1972, Chemical theories of the demyelination in multiple sclerosis, in: Multiple Sclerosis, Immunology, Virology and ftllrastructure ( F. Wolfgram, G. W. Ellison, J. G. Stevens, and J. M. Andrews, eds.), pp. 173–182, Academic Press, New York.Google Scholar
  243. Wolfgram, F., and Tourtellotte, W. W., 1972, Amino acid composition of myelin in multiple sclerosis, Neurology 22: 1044.PubMedCrossRefGoogle Scholar
  244. Wolfgram, F., Fewster, M. E., and Mead, J. F., 1969, I-ipids and amino acids of multiple sclerosis myelin, in: Proceedings of a Symposium on Selected Topics in Human Chemical Neuropathology, Rite. Patol. Nerz. Ment., pp. 96-100.Google Scholar
  245. Yanagihara, T., and Cumings, J. N., 1969, Alterations of phospholipids, particularly plasmalogens, in the demyelination of multiple sclerosis as compared with that of cerebral oedema, Brain 92:59. Yu, R. K., Ledeen, R. W., and Eng, L. F., 1974, Ganglioside abnormalities in multiple sclerosis, J. Neurochem. 23: 169.Google Scholar
  246. Yu, R. K., ITeno, K., Glaser, G. H., and Tourtel lot te, W. W., 1982, I.ipid and protein alterations of spinal cord and cord myelin of multiple sclerosis, J. Neurochem. 39: 164.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • William T. Norton
    • 1
  • Wendy Cammer
    • 1
  1. 1.The Saul R. Korey Department of Neurology and the Department of NeuroscienceAlbert Einstein College of MedicineThe BronxUSA

Personalised recommendations