Myelin pp 1-50 | Cite as

Morphology of Myelin and Myelination

  • Cedric S. Raine


Myelin is a membrane characteristic of nervous tissue, laid down in segments along selected nerve fibers, that functions as an insulator to increase the velocity of stimuli being transmitted between a nerve-cell body and its target. While well documented in several invertebrates (annelids and crustaceans) in which it exists in its peripheral nervous system (PNS) form, myelin is most commonly associated with the vertebrate nervous system in which it has evolved into two forms, central and peripheral. Morphologically, myelin is unique, and while this chapter will highlight the morphological uniqueness of myelin, it is important to note that myelin is also distinct biochemically, physiologically, and immunologically. The latter three aspects form the subjects of later chapters in this volume. Structurally, myelin is recognized as a lipid bimolecular leaflet sandwiched between two layers of protein and wrapped in a spiral fashion around a segment of axon. Such a length of myelin sheath is known as an internode, being delineated at either end by nodes of Ranvier, specialized areas along the axon. Ontogenetically, myelin arises from its cell of origin as a flattened cytoplasmic process that is elaborated around the axon and that later becomes compacted and loses its cytoplasmic content (except for small pockets, usually displaced peripherally) to form a tightly wound, membranous sheath comprising a series of alternating lipid and protein lamellae.


Schwann Cell Basal Lamina Myelin Sheath Myelin Formation Transverse Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguayo, A. J., Charron, L., and Bray, G. M, 1976,Potential of Schwann cells from unmyelinated nerves to produce myelin: A quantitative ultrastructural and radiographic study, J. Neurocytol. 5:565 Google Scholar
  2. Allt, G., 1969,Development of nodal processes in nerve, J. Anat. (London) 105:283 Google Scholar
  3. Andres, K 1965Heber die Feinstruktur besonderer Einrichtungen in markhaltigen Nervenfasern des Kleinhirns der Ratte Z. Zellforsch. Mikrosk. Anat. 65:701.Google Scholar
  4. Asbury, A. K., 1975,The biology of Schwann cells, in: Peripheral Neuropathy, Vol. 1 (P J. Dyck, P. K. Thomas, and E. H. Lambert, eds.), pp. 201–212, W B. Saunders, Philadelphia.Google Scholar
  5. Ballin, R. H. M., and Thomas, P. K., 1969,Electron microscope observations on demyelination and remyelination in experimental allergic neuritis. Part 2 Remyelination, J. Neurol. Sei. 8:225 Google Scholar
  6. Bargmann, W., and Lindner, E., 1964, Ueher den Feinbau des Nebennierenmarks des Igels, Z. Zellforsch. Mikrosk. Anat. 64: 868.Google Scholar
  7. Berthold, C.-H., 1968, Ultrastructure of the node-paranode region of mature feline ventral lumbar spinal-root fibres, Acta Soc. Med. Upsal 73: 37.PubMedGoogle Scholar
  8. Berthold, C.-H., 1978, Morphology of normal peripheral nerves, in: Physiology and Pathohiology of Axons ( S. G. Waxman, ed.), pp. 3–63, Raven Press, New York.Google Scholar
  9. Berthold, C.-H., and Sköglund, S., 1968, Postnatal development of feline paranodal myelin-sheath segments. II. Electron microscopy, Acta Soc. Med. Upsal 73: 145.PubMedGoogle Scholar
  10. Bignami, A., and Ralston, H. J., III, 1968, Myelination of fibrillary astroglial processes in long-term b’allerian degeneration: The possible relationship to “status marmoratus,” Brain Res. 11: 710.PubMedCrossRefGoogle Scholar
  11. Blakemore, W. F., 1969, Schmidt-Lanterman incisures in the central nervous system, J. Ultra.struct. Res 29: 496.CrossRefGoogle Scholar
  12. Blakemore, W. F., 1973, Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone, J. Neurol. Sci 20: 73.PubMedCrossRefGoogle Scholar
  13. Blank, W. F., Bunge, M. B., and Burge, R. P., 1974, The sensitivity of the myelin sheath, particularly the Schwann-cell axolemmal junction, to lowered calcium levels in cultured sensory ganglia, Brain Res. 67: 503.PubMedCrossRefGoogle Scholar
  14. Bodian, D., and Taylor, N., 1963, Synapse arising at central node of Ranvier, and note on fixation of the central nervous system, Science 139: 330.PubMedCrossRefGoogle Scholar
  15. Boll, F., 1877, Studi sulk imagini microscopic he della fibra nervosa midollare, Atti Accad. Naz. Lincei Rc. Ser 3 (I): 75.Google Scholar
  16. Bologa-Sandru, L., Siegrist, H. P., Zgraggen, H., Holman, K., Wiesmann, U., Dahl, D., and Herschkowitz, N., 1981, Expression of antigenic markers during the development of oligodendrocytes in mouse brain cultures, Brain Res. 210: 217.PubMedCrossRefGoogle Scholar
  17. Bonnaud-Toulze, E. N., and Raine, C. S., 1980, Remodelling during remyelination in the peripheral nervous system, Neuropathol. Appt. Neurobiol 6: 273.Google Scholar
  18. Bonnaud-Toulze, E. N., Johnson, A., Bornstein, M., and Raine, C. S., 1981, A marker for oligodendrocytes and its relation to myelinogenesis: An immunocytochemicalstudy with experimental allergic encephalomyelitis serum and central nervous system cultures, J. Neurocytol 10: 645.PubMedCrossRefGoogle Scholar
  19. Bornstein, M. B., and Appel, S. H., 1961, The application of tissue culture to the study of experimental “allergic” encephalomyelitis. I. Patterns of demyelination, J. Neuropathol. Exp. Neurol 20: 141.CrossRefGoogle Scholar
  20. Bornstein, M. B., and Raine, C. S., 1970, Experimental allergic encephalomyelitis: Antiserum inhibition of myelination in vitro, Lab. Invest 23: 536.PubMedGoogle Scholar
  21. Bornstein, M. B., and Raine, C. S., 1980, Antiserum-induced alterations of myelinogenesis in cultured CNS and PNS tissue, in: Tissue Culture in Neurobiology ( E. Giacobini, A. Vernadakis, and A. Shahar, eds.), pp. 427–440, Raven Press, New York.Google Scholar
  22. Brady, R. O., and Quarles, R. H., 1973, The enzymology of myelination, blot. Cell. Biocheut 2: 23.CrossRefGoogle Scholar
  23. Brockes, J. P., Fryxell, K. J., and Lemke, G. E., 1981, Studies on cultured Schwann cells: The induction of myelin synthesis, and the control of their proliferation by a new growth factor, J. Exp. Biol 95: 215.PubMedGoogle Scholar
  24. Bunge, M. B., Bunge, R. P., and Ris, H., 1961, Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord, J. Biophys. Biochem. Cytol 10: 67.PubMedCrossRefGoogle Scholar
  25. Bunge, M. B., Bunge, R. P., and Pappas, G. D., 1962, Electron microscopic demonstrations of connections between glia and myelin sheaths in the developing mammalian central nervous system, J. Cell Biol 12: 448.PubMedGoogle Scholar
  26. Bunge, R. P., 1968, Glial cells and the central myelin sheath, Physiol. Rev 48: 197.PubMedGoogle Scholar
  27. Bunge, R. P., 1970, Structure and function of neuroglia: Some recent observations, in: The Neurosciences: Second Study Program (F. O. Schmitt, cd.), pp. 728–797, Rockefeller University Press, New York.Google Scholar
  28. Bunge, R. P., and Glass, P., 1965, Some observations on myelin-glial relationships and on the etiology of the cerebrospinal fluid exchange lesion, Ann. N. Y. Acad. Sci 122: 15.PubMedCrossRefGoogle Scholar
  29. Caley, D. W., 1967, Ultrastructural differences between central and peripheral myelin sheath formation in the rat, Anat. Rec 157: 223A.Google Scholar
  30. Caley, D. W., and Butler, A. B., 1974, Formation of central and peripheral myelin sheaths in the rat: An electron microscopic study, Am. J. Anal 140: 339.CrossRefGoogle Scholar
  31. Carey, D. J., and Bunge, R. P., 1982, Factors influencing the release of protein by cultured Schwann cells, J. Cell. Biol 91: 666.CrossRefGoogle Scholar
  32. Caspar, D. L., and Kirschner, D. A., 1971, Myelin membrane structure at 10 A resolution, Nature (London) 231: 46.CrossRefGoogle Scholar
  33. Clos, J., and Legrand, J., 1970, Influence de la deficience thyroidienne et de la sousalimentation sur la croissance et la myelinisation des fibres nerveuse du nerf sciatique chez jeune rat blanc: Etude au microscope electroniquc, Brain Res. 22:285Google Scholar
  34. Dayson, H., and Danielli, J. F., 1943, The Permeability of Natural Membranes, Cambridge University Press, London.Google Scholar
  35. DeBaecque, C., Raine, C. S., and Spencer, P. S., 1976, Copper binding at PNS nodes of Ranvier during demyelination and remyelination in the perincurial window, Neuropathol. Appl. Neurobiol 2: 459.CrossRefGoogle Scholar
  36. Denny-Brown, D., and Brenner, D., 1944, Lesion in peripheral nerve induced by direct pressure and by tourniquet, Arch. Neurol. Psychiatry (Chicago) 41: 1.Google Scholar
  37. Dermictzcl, K., 1974a, Junctions in the central nervous system of the cat. I. Membrane fusion in central myelin, Cell Tissue Res. 148: 565.CrossRefGoogle Scholar
  38. Dermietzel, K., 1974b, Junctions in the central nervous system. I1. A contribution to the tertiary structure of the axonal-glial junction in the paranodaI region of the node of Ranvier, Cell Tissue Res. 148: 577.PubMedCrossRefGoogle Scholar
  39. De Robertts, E., Gerschenfcld, H., and Wald, F., 1958, Cellular mechanisms of myelination in the central nervous system, J. Biophys. Bioc hem. Cytol 4: 651.CrossRefGoogle Scholar
  40. Duncan, D., 1934, A relation between axon diameter and myelination determined by measurements of myelinated spinal root fibers, J. Comp. Neurol 60: 437.CrossRefGoogle Scholar
  41. Elfv in, L.-G., 1961, The ultastructure of the nodes of Ranvier in cat sympathetic nerve fibers, J. Ultrastruct. Res 5: 371.Google Scholar
  42. Elfyin, L.-G., 1968, The structure and composition of motor, sensory’, and autonomic nerves and nerve fibers, in: The Structure and Function of Nervous Tissue, Vol. 1 ( G. H. Bourne, ed.), pp. 325–377, Academic Press, New York.Google Scholar
  43. Eruyei, S., and Young, M. R., 1966, Pulsatile and myelin-forming activities of Schwann cells in vitro, J. Phqsiol. (London) 183: 469.Google Scholar
  44. Farooq, M., Camrzeer, W., Snyder, D., Raine, C. S., and Norton, W., 1981, Properties of bovine oligodendroglia isolated by a new procedure using physiologic media, J. Neurochem 36: 431.PubMedCrossRefGoogle Scholar
  45. Fernandez-Moran, H., 1950, EM observations on the structure of the mselinated nerve sheath, Exp. Cell Res. 1: 143.Google Scholar
  46. Fernandez-Moran, H., 1954, The submicroscopic structure of nerve fibres, Prog. Biophys. 4:112. 1’ewster, M. E., Blackstone, S. C., and Ihrig, T. J., 1973, The preparation and characterization of isolated oligodendroglia from bovine white matter, Brain Res. 63: 263.Google Scholar
  47. Field, E. J., Raine, C. S., and Hughes, D., 1968, Failure to induce myelin sheath formation around artificial fibres: With a note on the toxicity of polyester fibres for nervous tissue in vitro, J. Neurol. Sci 8: 129.CrossRefGoogle Scholar
  48. Finean, J. B., 1953, Structural features of lipid and lipoprotein complexes in nerve myelin, in: Conference on Biochemical Problems of Lipids, pp. 82–91, Palais der AcademienGoogle Scholar
  49. Brussels. ’Mean, J. B., 1965, Molecular parameters in the nerve myelin sheath, Ann. N. Y. Acad. Sci 122:51. Friede, R. I., 1972a, Mechanics of myelin sheath expansion, Prog. Brain Res 40:425.Google Scholar
  50. Friede, R. L., 1972b, Control of myelin formation by axon caliber (with a model of the control mechanism), J. Comp. Neural 144: 233.CrossRefGoogle Scholar
  51. Friede, R. L., and Bischhausen, R., 1982, How are sheath dimensions affected by axon caliber and inlernode length?, Brai„ Res. 235: 335.CrossRefGoogle Scholar
  52. Friede, R. L., and Miyagishi, T., 1972, Adjustment of the myelin sheath to changes in axon caliber, Anat. Rec 172: 1.PubMedCrossRefGoogle Scholar
  53. Friede, R. L., and Samorajski, T., 1967, Relation between the number of myelin lamellae and axon circumference in fibers of vagus and sciatic nerves in mice, J. Comp. Neural 130: 223.CrossRefGoogle Scholar
  54. Gasser, 11. S., 1952, Discussion in the hypothesis of saltatory conduction, Cold Spring Harbor Syrnp. Quant. Biol 17: 32.Google Scholar
  55. Gebicke-Harter, P., Althaus, H., Schwartz, P., and Neuhoff, V., 1981, Oligodendrocytes from postnatal cat brain in cell cultures. 1. Regeneration and Maintenance, Brain Res. 227: 197.Google Scholar
  56. CGeren, B. B., 1954, The formation from the Schwann cell surface of myelin in peripheral nerves of chick embryos, Exp. Cell Res. 7: 558.CrossRefGoogle Scholar
  57. Ghabriel, M. N., and Allt, G., 1981, Incisures of Schmidt-Lanterman, Prog. Neurobiol. 17:25. Ghabriel, M. N., and Alit, G., 1982, The node of Ranvier, in: Progress in Anatomy, Vol. 2 ( R. J. Harrison and V. Navaratnam, eds.), pp. 138–160, Cambridge University Press, London.Google Scholar
  58. Gombault, M., 1888, Contributions a l’étude anatomique de la névrite parenchymateuse subSigue et chronique: Névrite segmentaire periaxiale, Arch. Neurol. (Paris) 1: 11.Google Scholar
  59. Gbthl in, G. F., 1913, Die doppelbrechenden Eigenschaften des Nervengewebes, K. Sven. I’etenskapsakad. Handl 51 (1): 1.Google Scholar
  60. Gray, E. G., 1959, Axo-somatic-and axo-dendritic synapses of the cerebral cortex: An electron microscope study, J. Anat 93: 420.PubMedGoogle Scholar
  61. Gray, E. G., 1970, The fine structure of nerve, Comp. Biochem. Physiol 36: 413.Google Scholar
  62. Hall, S. M., and Williams, P. L., 1970, Studies on the “incisures” of Schmidt and Lanterman, J. Cell Sci 6: 767.PubMedGoogle Scholar
  63. Hamburgh, M., 1969, The role of thyroid and growth hormones in neurogenesis, in: Developmental Biology, Vol. 4 ( A. A. Moscona and A. Montoy, eds.), pp. 109–148, Academic Press, New York.Google Scholar
  64. Harkin, J. C., 1964, A series of desmosomal attachments in the Schwann sheath of myelinated mammalian nerves, Z. Zellforsch. Mikrosk. Anat 64: 189.Google Scholar
  65. Harrison, R. G., 1924, Neuroblast versus sheath cell in the development of peripheral nerves, J. Comp. Neurol 37: 123.CrossRefGoogle Scholar
  66. Hess, A., 1965, Developmental changes in the structure of the synapse in the myelinated cell bodies of the chicken ciliary ganglion, J. Cell Biol 25: 1.PubMedCrossRefGoogle Scholar
  67. Hess, A., and Young, J. Z., 1949, Correlation of interrtoda1 length and fibre diameter in the central nervous system, Nature (London) 164: 490.CrossRefGoogle Scholar
  68. Hess, A., and Young, J. Z., 1952, The nodes of Ranvier, Proc. R. Soc. (London) See. B 140:301. Hild, W., 1957, Myelinogenesis in cultures of mammalian central nervous tissue, Z. Zellforsch. Mikrosk. Anat 46: 71.Google Scholar
  69. Hildebrand, C., 1971a, Ultrastructural and light-microscopic studies of the nodal region in large myelinated fibers of the adult feline spinal cord white matter, Acta Physiol. Scand 364: 43.Google Scholar
  70. Hildebrand, C., 1971b, Ultrastructvral and light-microscopic studies of the developing feline spinal cord white matter. II. Cell death and myelin sheath disintegration in the early postnatal period, Acta Physiol. Scand 364: 109.Google Scholar
  71. Hildebrand, C., 1972, Evidence for a correlation between myelin period and number of myelin lamellae in fibres of the feline spinal cord white matter, J. Neurocytol 1: 223.PubMedCrossRefGoogle Scholar
  72. Hildebrand, C., and Muller, H., 1974, Low-angle X-ray diffraction studies on the period of central myelin sheaths during preparation for electron microscopy: Comparison between different anatomical areas, Neurobiology 4: 71.PubMedGoogle Scholar
  73. Hillarp, N. A., and Olivecrona, H., 1946, Role played by axons and Schwann cells in degree of myelination of peripheral nerve fibres, Acta Anat. 2: 17.PubMedCrossRefGoogle Scholar
  74. Hirano, A., 1968„N confirmation of the oligodendroglial origin of myelin in the adult rat, J. Cell Biol 38: 637.Google Scholar
  75. Hirano, A., 1981, Structure of normal central myelinated fibers, in: Advances in Neurology, Vol. 31, Demyelinating Diseases: Basic and Clinical Electrophysiology ( S. C. Waxman and J. M. Ritchie, eds.), pp. 51–68, Raven Press, New York.Google Scholar
  76. Hirano, A., 1982, The permeability of the extracellular spaces at the Schmidt- Lanterman clefts and paranodes in peripheral myelin sheaths, Acta Neuropathol. (Berlin) 58: 34.CrossRefGoogle Scholar
  77. Hirano, A., and Dembitzer, H. M., 1967, A structural analysis of the myelin sheath in the central nervous system, J. Cell Biol 34: 555.PubMedCrossRefGoogle Scholar
  78. Hirano, A., and Dembitzer, H. M., 1969, The transverse bands as a means of access to the periaxonal space of the central myelinated nerve fibre, J. Ultrastruct. Res 28: 141.PubMedCrossRefGoogle Scholar
  79. Hirano, A., and Dembitzer, H. M., 1982, Further studies on the transverse bands, J. Neurocytol. 11:861. Hirano, A., Levine, S., and Zimmerman, H. M., 1968, Remyelination in the central nervous system after cyanide intoxication, J. Neuropathol. Exp. Neurol 27: 234.CrossRefGoogle Scholar
  80. Hiscoe, H. B., 1947, The distribution of nodes and incisures in normal and regenerating nerve fibers, Anat. Rec 99: 447.PubMedCrossRefGoogle Scholar
  81. Honjin, R., Kosaka, T., Tatano, I., and Hiramatsu, K., 1963, Electron microscopy of nerve fibers. VII. On the electron dense radial component in the laminated myelin sheath, Okajimas Folia Anat. Jpn 39: 39.PubMedGoogle Scholar
  82. Itoyama, Y., Sternberger, N. H., Kies, M. W., Cohen, S. R., Richardson, E. P., Jr., and Webster, H. de F., 1980a, Immutoeytochemiea1 method to identify myelin basic protein, oligodendroglia and myelin sheaths of the human nervous system, Ann. Neurol 7: 157.PubMedCrossRefGoogle Scholar
  83. Itoyama, Y., Sternberger, N. H., Webster, H. de F., Quarles, R. H., Cohen, S. R., and Richardson, E. P., Jr., 1980b, Immunocytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions, Ann. Neural 7: 167.CrossRefGoogle Scholar
  84. Jacobs, J. M., and Cavanagh, J. B., 1972, Aggregations of filaments in Schwann cells of spinal roots of the normal rat, J. Neurocytol 1: 161.PubMedCrossRefGoogle Scholar
  85. Karlsson, U., 1966, Comparison of the myelin period of peripheral and central origin by electron microscopy, J. Ultrastruct. Res 15: 451.PubMedCrossRefGoogle Scholar
  86. Key, A., and Retzius, G., 1876, Studien in der Anatomie des Nervensystems und des Bindegewebes,Sampson and Wallin, Stockholm.Google Scholar
  87. Kristol, C., Sandir, C., and Akert, K., 1978, Intramembranous particles at the nodes of Ranvier of the cat spinal cord: A morphometric study, Brain Res. 142: 391.PubMedCrossRefGoogle Scholar
  88. Kruger, L., and Maxwell, D. S., 1966, Electron microscopy of oligodendroglia in normal rat cerebrum, Am. J. Anat 118: 411.PubMedCrossRefGoogle Scholar
  89. Laatsch, R. H., and Cowan, M. W., 1966, A structural specialization at nodes of Ranvier in the central nervous system, Nature (London) 210: 757.CrossRefGoogle Scholar
  90. Lampert, P. W., 1965, Demyelination and remyelination in E.A.E.: Further E.M. observations, J. Neuropathol. Exp. Neural 24: 371.CrossRefGoogle Scholar
  91. Landon, D. N., 1981, Structure of normal peripheral myelinated nerve fibres, in:,chances in Neurology, Vol. 31, Demyelinating Diseases: Basic and Clinical Electrophy.siology (S. G. Waxman and J. M. Ritchie, eds.), pp. 25–49, Raven Press, New York.Google Scholar
  92. Landon, D., and Williams, P., 1963, Ultrastructure of the node of Ranvier, Nature (London) 199:575. Langley, O. K., and Landon, D. N., 1968, A light and electron histochernical approach to the node of Ranvier and myelin of peripheral nerve fibers, J. HO to(h em. Cytoc hem 14: 722.Google Scholar
  93. Lan terman, A. J., 1877, Ueber den feineren Bau der Mark halt igen Nervenfasern, Arch. Mikrosk. Antat. 13: 1.Google Scholar
  94. Lieberman, A. R, Webster, K. F., and Spacek, J., 1972, Multiple myelinated branches from nodes of Ranvier in the central nervous system, Brain Res. 44: 652PubMedCrossRefGoogle Scholar
  95. Livingston, R. B., Pfenninger, K., Moor, H., and Akert, K., 1973, Specialized paranodal and in terparanodal glial-axonal junctions in the peripheral and central nervous system: A freeze-etching study, Brain Res. 1: 24.Google Scholar
  96. Lubinska, L., 1959, Region of transition between preserved and regenerating parts of myelinated fibers, J. Camp. Neural 113: 315.CrossRefGoogle Scholar
  97. I.udwin, S. K., 1979, The perineuronal satellite oligodendrocyte: A role in remyelination, Acta Neuropathol. (Berlin) 47: 49.Google Scholar
  98. Luse, S. A., 1956, Formation of the myelin in the CNS of mice and rats as studied with electron microscopy, J. Biophys. Bloc hem. Cytol 2: 777.CrossRefGoogle Scholar
  99. Luxoro, NI., 1958, Observations in myelin structure: Incisures and nodal regions, Proc. Natl. Acad. U.S.A 44: 152.CrossRefGoogle Scholar
  100. Martin, J. R., and Webster, H. de F., 1973, Mitotic Schwann cells in developing nerve: Their changes in shape, fine structure and axon relationships, Dec. Biol 32: 417.CrossRefGoogle Scholar
  101. Matthews, M. A., 1968, An electron microscopic study of the relationship between axon diameter and the initiation of myelin production in the peripheral nervous system, Anat. Rec 161: 337.PubMedCrossRefGoogle Scholar
  102. Matthieu, J.-M., Honegger, P., Favrod, P., Poduslo, J. F., Costantino-Ceccarini, E., and Krstic, R., 1980, Myelination and demyelination in aggregating cultures of rat brain cells, in Tissue Culture in Neurobiology ( F’. Giacobini, A. Vernadakis, and A. Shahan, eds.), pp. 441–459, Raven Press, New York.Google Scholar
  103. Maturana, H. R., 1960, The fine anatomy of the optice nerve of anurans—An EM study, J. Biophys. Biochem. Cytol 7: 107.PubMedCrossRefGoogle Scholar
  104. McAlear, J. H., Milburn, N. S., and Chapman, G. B., 1958, The fine structure of Schwann cells, nodes of Ranvier, and Schmidt-Lanterman incisures in the central nervous system of the crab, Cancer irroratus, J. Ultrastruct. Res 2: 171.PubMedCrossRefGoogle Scholar
  105. McCarthy, K., and deVellis, J., 1980, Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue, J. Cell Biol 85: 890.PubMedCrossRefGoogle Scholar
  106. Meier, C., 1976, Some observations on early myelination in the human spinal cord: bight and electron, Brain Res. 104: 21.PubMedCrossRefGoogle Scholar
  107. Mendell, J. R., and Whitaker, J. N., 1977, Immunocytochemical localization studies of myelin basic protein, J. Cell Biol 76: 502.CrossRefGoogle Scholar
  108. Metuzals, J., 1961, The relationship between the glia satellite cell and the axon in the central myelinated fibers, in: Proceedings of the Third European Regional Conference on Electron Microscopy, Vol. B ( M. Titlbach, ed.), p. 301, Czechoslovak Academy of Science, Prague.Google Scholar
  109. Met uzals, J., 1965, Ultras tructurc’ of the nodes of Ranvier and their surrounding structures in the central nervous system, Z. Zellforsch. Mikrosk. Anat 65: 719.CrossRefGoogle Scholar
  110. Minsky, R., 1982, The use of antibodies to define and study major cell types in the central and peripheral nervous system, in: Current Topics in Neurobiology, Neuroimmunalogy (J. Brockes, cd.), pp. 141–181, Plenum Press, New York.Google Scholar
  111. Minsky, R., Winter, J., Abney, E. R., Press, R. M., Gavrilovic, J., and Raff, M. C., 1980, Myelin-specific protein and glycolipids in rat Schwalm cells and oligodendrocyte.s in culture, J. Cell Biol 84: 483.CrossRefGoogle Scholar
  112. Mizuhira, V., and Ozawa, H., 1967, On the fine structure of nerve myelin by means of glutaraldehyde fixation, J. Electron Microsc 16: 169.Google Scholar
  113. Morell, P., and Norton, W. ‘1’., 1980, Myelin, Sci. Am 242: 88–118.CrossRefGoogle Scholar
  114. Mori, S., and Leblond, C. P., 1970, Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats, J. Comp. Neural 139: 1.CrossRefGoogle Scholar
  115. Moscona, A. A., 1965, Recombination of dissociated cells and the development of cell aggregates, in: Cells and Tissues in Culture ( B. NI. Wilhner, ed.), pp. 189–529, Academic Press, Ness’ York.Google Scholar
  116. Mugnaini, E., and Schnapp, B., 1971, Possible role of zonula occludcns of the myelin sheath in demyelinating conditions, Nature (London) 251: 725.CrossRefGoogle Scholar
  117. Mugnaini, E., and \Valberg, F., 1964, U1trastructure of neuroglia, Frgeb. Anal. F, ntu’icklungsgesch 37: 194.Google Scholar
  118. Nagara, H., and Suzuki, K., 1982, Radial component of the central myelin in neurologic mutant mice, Lab. Invest 47: 51.PubMedGoogle Scholar
  119. Nagashima, K., 1979, Ultrastructural study of rnyelinating cells and subpial astrocytes in developing rat spinal cord, J. Neuroi. Sri 44: 1.CrossRefGoogle Scholar
  120. Nageotte, J., 1910, Phenomenes de sécretion dans le protoplasma de cellules neurologiques de la substance grise, C. R. Soc. Biol. (Paris) 68: 1068.Google Scholar
  121. Napolitano, L. M., and Scallen, T. J., 1969, Observations on the fine structure of peripheral nerve myelin, Anat. Rec 163: 1.PubMedCrossRefGoogle Scholar
  122. Napolitano, L. 51., LeBaron, F., and Scaletti, J., 1967, Preservation of myelin lamellar structure in the absence of lipid: A correlated chemical and morphological study, J. Cell Biol 34: 817.Google Scholar
  123. Norton, %V. T, Farooq, NI., Fields, K. L., and Raine, C. S., 1983. The long terra culture of bulk-isolated bovine oligodendroglia from adult brain, Brain Res. 270: 295.Google Scholar
  124. Ochoa, J., Fowler, T. J., and Gillian, R. W., 1972„ Anatomical changes in peripheral nerves compressed by a pneumatic tourniquet, J. Anat 113: 433.Google Scholar
  125. Okada, N., 1982, Early myelin formation and glial cell development in the human spinal cord, Anat. Rec 202: 483.CrossRefGoogle Scholar
  126. Omlin, F. X., Webster, H. de F., Palkovits, C. G., and Cohen, S. R., 1982, Immunocytochemical localization of basic protein in major dense line regions of central and peripheral myelin, J. Cell. Biol 95: 212.CrossRefGoogle Scholar
  127. Palay, S. L., Sotelo, C., Peters, A., and Orkand, P. M., 1968, The axon hillock and initial segment, J. Cell. Biol 38: 193.PubMedCrossRefGoogle Scholar
  128. Périer, 0., 1962, La myeline in nitro, in: Livre Jubilaire, Institut Bunge, Doc teurLudo non Bogaert, pp. 621–639, Acta Modica Belgica, Brussels.Google Scholar
  129. Peters, A., 1960a, The structure of myelin sheaths in the CAS of Xeunpu.s laevis, J. Btophvs. Biochem. Cytol 7: 121.CrossRefGoogle Scholar
  130. Peters, A., 1960b, The formation and structure of myelin sheaths in the central nervous system, J. Biophys. Biochem. Cytol 8: 431.PubMedCrossRefGoogle Scholar
  131. Peters, A., 1961, A radial component of central myelin sheaths, J. Biophps. Biochem. Cytol. 11:733. Peters, A., 1964, Observations on the connexions between myelin sheaths and glial cells in the optic nerve of young rats, J. Anat 98: 125.Google Scholar
  132. Peters, A., 1966, The node of Ranvier in the central nervous system, Q. J. Exp. Phy.siol. 51:229. Peters, A., and Proskauer, C. C., 1969, The ratio between myelin segments and oligodendrocytes in the optic nerve of the adult rat, Anal. Rec 163: 213A.Google Scholar
  133. Peters, A., and Vaughn, J. E., 1970, Morphology and development of the myelin sheath, in: diyelirrntion(A. N. Davison and A. Peters, eds.), pp. 3–79, Charles C. Thomas, Springfield, Illinois.Google Scholar
  134. Peters, A., Palay, S. I_., and Webster, H. de F., 1976, The Fine Structure of the Nervous System, W. B. Saunders, Philadelphia.Google Scholar
  135. Peterson, E. R., and Murray, M. R., 1955, Myelin sheath formation in cultures of avian spinal ganglia, Am. J. Anat 96: 319.PubMedCrossRefGoogle Scholar
  136. Phillips, D. D., Hibbs, R. G., Ellison, J. P., and Shapiro, H., 1972, An electron microscopic study of central and peripheral nodes of Ranvier, J. Anat 111: 229.PubMedGoogle Scholar
  137. Pinto da Silva, P., and Miller, R. G., 1975, Membrane particles on fractun faces of frozen myelin, Prot. Natl. Acad. Sci. U.S.A 72: 4046.CrossRefGoogle Scholar
  138. Pleasure, D., Abramsky, O., Silberberg, D., Quinn, B., Parris, J., and Saida, T., 1977, Lipid synthesis by an oligodendroglial fraction in suspension culture, Brain Res. 134: 377.PubMedCrossRefGoogle Scholar
  139. Poduslo, S. E., and Norton, W. T., 1972, Isolation and some chemical properties of oligodendroglia from calf brain, J. Neureschem 19: 727.CrossRefGoogle Scholar
  140. Poduslo, S. E., Miller, K., and McKhann, G. M., 1978, Metabolic properties of maintained oligodendroglia purified from brains, J. Biol. Chem 253: 1592.PubMedGoogle Scholar
  141. Prineas, J., Raine, C. S., and Wisniewski, H., 1969, An ultrastructural study of experimental demyelination and remyelination. III. Chronic experimental allergic encephalomyelitis in the central nervous system, Lab. Invest 21: 472.PubMedGoogle Scholar
  142. Raff, M. C., Minsky, R., Fields, K. I., Lisak, R., Dorfman, S., Silberberg, D., Gregson, M., Leibowitz, S., and Kennedy, M., 1978, Ga tact ocerebroside is a specific cell surface antigenic marker for oligodendrocytes in culture, Nature (London) 274: 813.Google Scholar
  143. Raff, M. C., Fields, K. L., I Iakomori, S., Minsky, R., Pruss, R. M., and Winter, J., 1979, Cell-type specific markers for distinguishing and studying neurons and the major classes of glial cells in culture, Brain Res. 174: 283.PubMedCrossRefGoogle Scholar
  144. Raine, C. S., 1973, Ultrastructural applications of cultured nervous system tissue to neuropathology, in: Progress in Neuropathology, Vol. 2 ( H. M. Zimmerman, ed.), pp. 27–68, Grune Stratton, New York.Google Scholar
  145. Raine, C. S., 1976a, Neurocellular anatomy, in: Basic Neurochemistry, 3rd ed. ( R. W. Albers, G. J. Siegel, R. Katzman, and B. W. Agranoff, eds.), pp. 5–33, Little, Brown, Boston.Google Scholar
  146. Raine, C. S., 1976b, Experimental allergic encephalomyelitis and related conditions, in: Progress in Neuropathology, Vol. 3 ( H. M. Zimmerman, ed.), pp. 225–251, Grune Sc Stratton, New York.Google Scholar
  147. Raine, C. S., 1977, Schwann cell responses during recurrent demyelination and their relevance to onion bulb formation, Neuropatltol. Appt. Neurobiol 3: 453.CrossRefGoogle Scholar
  148. Raine, C. S., 1978, Pathology of demyelination, in: Physiology and Pathobiology of Axons ( S. G. Waxman, ed.), pp. 283–310, Raven Press, New York.Google Scholar
  149. Raine, C. S., 1982, Differences between the nodes of Ranvier of large and small diameter fibers in the P.N.S., J. Neurocytol 11: 935.PubMedCrossRefGoogle Scholar
  150. Raine, C. S., 1984, On the association between perinodal astrocytic processes and the node of Ramier in the CNS, J. Neurocytol. 13: 12.CrossRefGoogle Scholar
  151. Raine, C. S., and Bornstein, M. B., 1970, Experimental allergic encephalomyelitis: A light and electron microscope study of remyelination and “sclerosis’’ in vitro, J. Neuropathol. Exp. Neural 29: 552.CrossRefGoogle Scholar
  152. Raine, C. S., and Bornstein, M. B., 1974, Unusual profiles in or,ganotypic cultures of central nervous tissue, J. Neurocytol 3: 313.PubMedCrossRefGoogle Scholar
  153. Raine, C. S., Hughes, D., and Field, E. J., 1968, Electron microscopic observations on the development of myelin in cultures of neonatal rat cerebellum, J. Neuroi. Sci 8: 49.Google Scholar
  154. Raine, C. S., Wisniewski, H., and Prineas, J., 1969, An ultrastructural study of experimental demyelination and remyelination. II. Chronic experimental allergic encephalomyelitis in the peripheral nervous system, Lab. Invest 21: 316.PubMedGoogle Scholar
  155. Raine, C. S., Poduslo, S. E., and Norton, W. T., 1971a, The ultrastructure of purified preparations of neurons and glial cells, Brain Res. 27: 1 I.Google Scholar
  156. Raine, C. S., Wisniewski, H., Dowling, P. C., and Cook, S. D., 1971b, An ultrastructural study of experimental demyelination and remyelination. IV. Recurrent episodes and peripheral nervous system plaque formation in experimental allergic encephalomyelitis, Lab. Invest 25: 28.PubMedGoogle Scholar
  157. Raine, C. S., Traugott, U., and Stone, S. H., 1978, Glial bridges and Schwann cell invasion of the CNS during chronic demyelination, J. Neurocytol 7: 541.PubMedCrossRefGoogle Scholar
  158. Ramon y Cajal, S., 1934, in: Degeneration and Regeneration of the Nervous System, Vol. 2, p. 485, Oxford University Press, London, 1968.Google Scholar
  159. Ranvier, L., 1871, Contributions a l’histologie et à 15 physiologie des nerfs periph’eriques, C. R. Acad. Sri 73: 1168.Google Scholar
  160. Ranvier, I., 1875, Trâite Technique d’Histologie, F. Savy, Paris.Google Scholar
  161. Reale, E., Luciano, L., and Spitznas, M., 1975, Zonulae occludentes of the myelin lamellae in the nerve fiber layer in the optic nerve of the rabbit: A demonstration by the freeze-facture method, J. Neurocytol 4: 131.PubMedCrossRefGoogle Scholar
  162. Refer, P. J., and Hughes, A. F., 1972, The effect of neonatal radiothyroidectomy upon myelinated axons and associated Schwann cells during maturation of the mouse sciatic nerve, Brain Res. 41: 263.CrossRefGoogle Scholar
  163. Revel, J. P., and Hamilton, D. W., 1969, The double nature of the intermediate dense line in peripheral nerve myelin, Anat. Rec 163: 7.PubMedCrossRefGoogle Scholar
  164. Revel, J. P., and Karnovsky, M. J., 1967, Hexagonal array of subunits in intercellular junctions in the mouse heart and liver, J. Cell Biol 33: C7.PubMedCrossRefGoogle Scholar
  165. Ritchie, J. M., and Chiu, S. Y., 1981, Distribution of sodium and potassium channels in mammalian myelinated nerve, in: Advances in Neurology, Vol. 31, DemyelinatingDiseases: Basic and Clinical Electrophysiology (S. G. Waxman and J. M. Ritchie, eds.), pp. 329–342Google Scholar
  166. Raven Press, New York. Robertson, J. D., 1955, The ultrastructure of adult vertebrate peripheral myelinated fibers in relation to myelinogenesis, J. Biophys. Biochem. Cyito1 1: 271.CrossRefGoogle Scholar
  167. Robertson, J. D., 1957, The ultrastructure of nodes of Ranvier in frog nerve fibers, J. Phvsiol. (London) 137: 8.Google Scholar
  168. Robertson, J. D., 1958, The ultrastructure of Schmidt-Lanterman clefts and related shearing defects of the myelin sheath, J. Biophys. Biocltent. Cytol 4: 39.CrossRefGoogle Scholar
  169. Robertson, J. D., Bodenheimer, T. S., and Stage, T. E, 1963, The ultrastructure of Mauthner cell synapses and nodes in goldfish brains, J. Cell Biol 19: 159.PubMedCrossRefGoogle Scholar
  170. Rosenbluth, J., 1966, Redundant myelin sheaths and other ultrastructural features of the toad cerebellum, J. Cell Biol 28: 73.PubMedCrossRefGoogle Scholar
  171. Rosenbluth, J., and Palay, S. L., 1962, The fine structure of nerve cell bodies and their myelin sheaths in the eighth nerve ganglion of the goldfish, J. Biophys. Biochern. Cytol 9: 853.CrossRefGoogle Scholar
  172. Schachner, M., Kim, S. K., and Zehnle, R., 1981, Developmental expression in central and peripheral nervous system of oligodendrocyte cell surface antigens (O antigens) recognized by monoclonal antibodies, Dee. Biol 83: 328.CrossRefGoogle Scholar
  173. Schlaepfer, W. W., and Myers, F. K., 1973, Relationship of myelin internode elongation and growth in the rat sural nerve, J. Comp. Neurol 147: 255.PubMedCrossRefGoogle Scholar
  174. Schmidt, H. D., 1874, On the construction of the dark or double-bordered nerve fiber, Mon. Microsc. J 11: 200.Google Scholar
  175. Schmidt, W. J., 1936, Doppelbrechung und Feinbau der Markscheider der Nervenfasern, Z. Zellforsch. Mikrosk. Anat 23: 657.CrossRefGoogle Scholar
  176. Schmitt, F. O., and Bear, R. S., 1937, Optical properties of vertebrate nerve axons as related to fiber size, J. Cell. Comp. Physiol 9: 261.CrossRefGoogle Scholar
  177. Schmitt, F. O., and Bear, R. S., 1939, The ultrastructure of the nerve axon sheath, Biol. Rev 14: 27.CrossRefGoogle Scholar
  178. Schmitt, F. O., Bear, R. S., and Clark, G. I., 1935, X-ray diffraction studies on nerve, Radiology 25: 131.Google Scholar
  179. Schmitt, F. O., Bear, R. S., and Palmer, J. J., 1941, X-ray diffraction studies of the nerve myelin sheath, J. Cell. Comp. Physiol. 18: 31.Google Scholar
  180. Schnapp, B., and Mugnaini, E., 1975, The myelin sheath: Electron microscopic studies with thin section and freeze fracture, in: Golgi Centennial Symposium: Perspectives in Neurobiology, ( M. Santini, ed.), p. 209–240, Raven Press, New York.Google Scholar
  181. Schnapp, B., Peracchia, C., and Mugnaini, E., 1976, The paranodal axo-glial junction in the central nervous system studied with thin sections and freeze fracture, Neuroscience 1: 181.PubMedCrossRefGoogle Scholar
  182. Schroder, J. M., 1970, Zur Feinstrukter und quantitativ Auswertung regenerierter peripherer Nervenfasern, in: Proceedings of the VIM International Congress of Neuropathology, pp. 628–646, Masson, Paris.Google Scholar
  183. Schwann, T., 1839, Mikroskopishe Untersuchungen über die Ueberein.stimmung in der Struktur und dem Wachstum der Tiere und Pflanzen, Sander, Berlin.Google Scholar
  184. Seeds, N. W., 1973, Differentiation of aggregating brain cell cultures, in: Tissue Culture of the Nervous System ( C;. Sato, ed.), pp. 35–53, Plenum Press, New York.CrossRefGoogle Scholar
  185. Silberberg, D. 11., Dorfman, S. H., Latovitski, N., and Younkin, L. H., 1980, Oligodendrocyte differentiation in myelinating cultures, in: Tissue Culture in Neurobiology ( E. Giacobini, A. Vernadakis, and A. Shahar, eds.), pp. 489–500, Raven Press, New York.Google Scholar
  186. Simpson, S. A., and Young, J. Z., 1945, Regeneration of fibre diameter after cross-unions of visceral and somatic nerves, J. Anat 79: 48.PubMedGoogle Scholar
  187. Singer, M., 1968, Penetration of labelled amino acids into the peripheral nerve fiber from surrounding body fluids, in: Ciba Foundation Symposium: Growth of the Nervous System ( G. E. W. Wolstenholme and M. O’Connor, eds.), pp. 200–215, Churchill, London.Google Scholar
  188. Sjöstrand, F. S., 1949, EM study of the retinal rods in the guinea pig eye, J. Cell. Comp. Physiol 33: 383.CrossRefGoogle Scholar
  189. Snyder, D. S., Raine, C. S., Farooq, M., and Norton, W. T., 1980, The bulk isolation of oligodendroglia from whole rat forebrain: A new procedure using physiologic media, J. Neurochem 34: 1614.PubMedCrossRefGoogle Scholar
  190. Speidel, C. C., 1964, In vivo studies of myelinated nerve fibers, Int. Rev. Cytol 16: 173.Google Scholar
  191. Spencer, P. S., Peterson, E. R., Madrid, R., and Raine, C. S., 1973a, Effects of thallium salts on neuronal mitochondria in organotypic cord-ganglia-muscle combination cultures, J. Cell Biol 58: 79.PubMedCrossRefGoogle Scholar
  192. Spencer, P. S., Raine, C. S., and Wisniewski, H., 1973b, Axon diameter and myelin thickness—Unusual relationships in dorsal root ganglia, Anat. Rec 176: 225.PubMedCrossRefGoogle Scholar
  193. Spencer, P. S., Weinberg, H. J., Raine, C. S., and Prineas, J. W., 1975, The perineurial window—A new model of focal demyelination and remyclination, Brain Res. 96: 323.PubMedCrossRefGoogle Scholar
  194. Sternberger, N. H., Itoyama, Y., Kies, M. W., and Webster, H. de F., 1978, Immunocytochemical method to identify basic protein in myelin-forming oligodendrocytes of newborn rat central nervous system, J. Neurocytol 7: 251.PubMedCrossRefGoogle Scholar
  195. Sunderland, S., 1946, The effect of rupture of the perineurium on the contained nerve fibres, Brain 69: 149.PubMedCrossRefGoogle Scholar
  196. Szuchet, S., and Stefansson, K., 1980, In vitro behavior of isolated oligodendrocytes, in: Advances in Cellular Neurobiology, Vol. 1 (S. Federoff and L. Hertz, eds.), pp. 313–346, Academic Press, New York.Google Scholar
  197. Thomas, P. K., 1964, Changes in the endoneurial sheaths of peripheral myelinated nerves during Wallerian degeneration, J. Antat 98: 175.Google Scholar
  198. Thomas, P. K., and Lascelles, R. G., 1966, Hypertrophie neuropathy, Q. J. Med. 36:223. Thomas, P. K., and Young, J. Z., 1949, Internode lengths in the nerves of fishes, J. Anat 83: 336.Google Scholar
  199. Tourneux, F., and LcGoff, R., 1875, Note sur les étranglements des tubes nerveux de la moeile epiniere, J. Anat. Physiol 2: 403.Google Scholar
  200. Trapp, B. D., Honegger, P., Richelson, E., and Webster, H. de F., 1979, Morphological differentiation of mechanically dissociated fetal rat brain in aggregating cell cultures, Brain Res. 160: 117.PubMedCrossRefGoogle Scholar
  201. Traugott, U., Snyder, D. S., Norton, W. ‘T., and Raine, C. S., 1978, Characterization of antioligodendrocyte serum, Ann. Neurol 4: 431.Google Scholar
  202. Traugott, U., Stone, S. H., and Raine, C. S., 1982, Chronic relapsing experimental autoimmune encephalomyelitis: Treatment with combinations of myelin components promotes clinical and structural recovery, J. Neurol. Sri 56: 65.CrossRefGoogle Scholar
  203. Unman, B. G., and Nogueira-Graf, G., 1957, Electron microscope studies of the formation of nodes of Ranvier in mouse sciatic nerves, J. Biophys. Biochem. Cytol 3: 589.CrossRefGoogle Scholar
  204. Uzman, B. G., and Villegas, G. M., 1960, A comparison of nodes of Ranvier in sciatic nerves with node-like structures in optic nerves of the mouse, J. Biophys. Biochem. Cytol 7: 761.PubMedCrossRefGoogle Scholar
  205. Vandenheuvel, F. A., 1965, Structural studies of biological membranes: The structure of myelin, Ann. N. Y. Acad. Sci 122: 57.CrossRefGoogle Scholar
  206. Virchow, R., 1854, Ueber das ausgebreitete Vorkommen einer dem Nervenmark analogen Substanz in den tierischen Geweben, Pirchows Arch. Pathol. Anat 6: 562.CrossRefGoogle Scholar
  207. Vizoso, A. D., and Young, J. Z., 1918, Internode length and fibre diameter in developing and regenerating nerves, J. Anat. (London) 82: 110.Google Scholar
  208. Waxman, S. G., 1971, An ultrastructural study of the pattern of myelination of preterminal fibers in teleost oculomotor nuclei, electromotor nuclei, and spinal cord, Brain Res. 27: 189.PubMedCrossRefGoogle Scholar
  209. Waxman, S. G., Pappas, G. D., and Bennett, M. V. L., 1972, Morphological correlates of functional differentiation of nodes of Ranvier along single fibers in the neurogenic electric.organ of the knife fish Sternarchus, J. Cell Biol 53: 210.PubMedCrossRefGoogle Scholar
  210. Webster, H. de F., 1962, Transient, local accumulation of axonal mitochondria during the early stages of Wallerian degeneration, J. Cell Biol 12: 361.PubMedCrossRefGoogle Scholar
  211. Webster, H. de F., 1964, The relationship between Schmidt-Lanterman incisures and myelin segmentation during Wallerian degeneration, Ann. N. Y. Acad. Sci 122: 29.CrossRefGoogle Scholar
  212. Webster, H. de F., 1971, The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerves, J. Cell Biol 48: 348.PubMedCrossRefGoogle Scholar
  213. Webster, H. de F., 1975, Peripheral nerve structure, in: The Peripheral Nervous System (J I. Hubbard, ed.), pp. 3–26, Plenum Press, New York.Google Scholar
  214. Webster, H. de F., and Spiro, D., 1960, Phase and electron microscopic studies of experimental demyelination. I. Variations in myelin sheath contour in normal guinea pig, J. Neuropathol. Exp. Neurol 19: 42.PubMedCrossRefGoogle Scholar
  215. Webster, H. de F., Spiro, D., Waksman, B., and Adams, R. D., 1961, Phase and electron microscope studies of experimental demyelination. II. Schwann cell changes in guinea pig sciatic nerves during experimental diphtheritic neuritis, J. Neuropathol. Exp. Neurol 20: 5.PubMedCrossRefGoogle Scholar
  216. Webster, H. de F., Martin, J. R., and O’Connell, M. F., 1973, The relationships between interphase Schwann cells and axons before myelination: A quantitative electron microscopic study, Dev. Biol 32: 401.PubMedCrossRefGoogle Scholar
  217. Weinberg, H. J., and Spencer, P. S., 1975, Studies on the control of myelinogenesis. I. Myelination of regenerating axons after entry into a foreign unmyelinated nerve, J. Neurocytol 4: 395.PubMedCrossRefGoogle Scholar
  218. Weinberg, H. J., and Spencer, P. S., 1976, Studies on the control of myelinogenesis. II. Evidence for neuronal regulation of myelin production, Brain Res. 113: 363.PubMedCrossRefGoogle Scholar
  219. Weller, R. O., 1968, An electron microscope study of hypertrophie neuropathy of Dejerine and Sottas, J. Neurol. Neurosurg. Psychiatry 30: 111.CrossRefGoogle Scholar
  220. Wiley-Livingston, C., and Ellisman, M. H., 1980, Development of axonal membrane specializations defines nodes of Ranvier and precedes Schwann cell myelin elaboration, Dev. Biol 79: 334.PubMedCrossRefGoogle Scholar
  221. Williams, P. L., and Hall, S. M., 1970, In vivo observations on mature myelinated nerve fibres of the mouse, J. Anat 107: 31.Google Scholar
  222. Williams, P. L., and Kashef, R., 1968, Asymmetry of the node of Ranvier, J. Cell Sri. 3:341. Williams, P. L., and Landon, D. N., 1963, Paranodal apparatus of peripheral myelinated nerve fibers of mammals, Nature (London) 198: 670.CrossRefGoogle Scholar
  223. Wollman, R. L., Szuchet, S., Barlow, J., and Jerkovic, M., 1981, Ultrastructural changes accompanying the growth of isolated oligodendrocytes, J. Neuro.sci. Res 6: 757.CrossRefGoogle Scholar
  224. Wood, P., 1976, Separation of functional Schwann cells and neurons from peripheral nerve tissue, Brain Res. 115: 361.PubMedCrossRefGoogle Scholar
  225. Wood, P. M., and Bunge, R. P., 1975, Evidence that sensory axons are mitogenic for Schwann cells, Nature (London) 256: 662.CrossRefGoogle Scholar
  226. Wood, P., and Bunge, R. P., 1984, The biology of the oligodendrocyte, in: Advances in Neurochemistry, Vol. 5, Oligodendroglia (W. T Norton, ed.), Chapter 1, Plenum Press, New York (in press).Google Scholar
  227. Wood, P., Okada, E., and Bunge, R. P., 1980, The use of networks of dissociated dorsal root ganglion neurons to induce myelination by oligodendrocytes in culture, Brain Res. 196: 247.PubMedCrossRefGoogle Scholar
  228. Worthington, C. R., and Blaurock, A. E., 1968, Electron density model for nerve myelin, Nature (London) 218: 87.CrossRefGoogle Scholar
  229. Wulfhekel, U., and Dullmann, J., 1971, Quantitative Untersuchungen an den Markscheiden im N. ischiadicus des Frosches und des Rhesusaffen unter besonderere Berücksichtigung der SchmidtI.antermanschen Einkerbungen, Z. Anat. Entwicklungsgesch 134: 298.Google Scholar
  230. Zawerthal, W., 1874, Contribuzione alto studio anatomico della fibrea nervosa, Riv. Accad. Sci. Fis. Mat. (Napoli) 1: 82.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Cedric S. Raine
    • 1
    • 2
  1. 1.Departments of Pathology (Neuropathology) and NeuroscienceAlbert Einstein College of MedicineThe BronxUSA
  2. 2.The Rose F. Kennedy Center for Research in Mental Retardation and Human DevelopmentAlbert Einstein College of MedicineThe BronxUSA

Personalised recommendations