Advertisement

Cardiology pp 365-371 | Cite as

Endogenous Regulation of Prostacyclin Synthesis in Arterial Smooth Muscle Cells

  • J. Larrue
  • D. Daret
  • B. Dorian
  • J. Henri
  • H. Bricaud

Abstract

The physiological and pathological roles of prostacyclin* (PGI2) and thromboxane A2 have attracted much attention in atherosclerosis. Many investigations support the hypothesis that the loss of balance between these two prostaglandins is involved in vascular disease.2 The capacity of the vascular wall to produce PGI2 was reported originally for the intimal surface,3 but medial smooth muscle cells also produce significant quantities both in vivo4,5 and under culture conditions.6 This capacity seems to be of importance especially after endothelial injury, such a situation probably involved in the atherosclerotic process. Using arterial smooth muscle cells in culture, we have previously demonstrated that, in comparison with healthy cultured cells, cells originating from atherosclerotic aortas have a decreased capacity to produce PGI2.8 Such a reduced prostacyclin formation has been reported in aged aortic smooth muscle cells9 associated with an increased PGE2 synthesis. Despite this, the regulative mechanisms of PGI2 generation in arterial cells remains unclear.

Keywords

Lipoxygenase Activity Arterial Smooth Muscle Cell Medial Smooth Muscle Cell Prostacyclin Synthesis Atherosclerotic Aorta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Gryglewski, A. Dembinska-Kièc, A. Zmuda and T. Gryglewska, Prostacyclin and thromboxane A2 biosynthesis capacities of heart arteries and platelets at various stages of experimental atherosclerosis in rabbits, Atherosclerosis 31:385 (1978).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Moncada, R. J. Gryglewski, S. Bunting, and R. J. Vane, An enzyme isolated from arteries transforms prostaglandin endoperoxydes to an unstable substance that inhibits platelet aggregation, Nature 263:663 (1976).PubMedCrossRefGoogle Scholar
  3. 3.
    A. G. Herman, S. Moncada, and R. J. Vane, Formation of prostacyclin (PGI2) by different layers of the arterial wall, Arch.Int.Pharmacodyn. 227:162 (1977).PubMedGoogle Scholar
  4. 4.
    S. Moncada, A.G. Herman, E. A. Higgs, and R. J. Vane, Differential formation of prostacyclin by layers of the arterial wall. An explanation for the anti thrombotic properties of vascular endothelium, Thromb.Res. 11:323 (1977).PubMedCrossRefGoogle Scholar
  5. 5.
    G. Hornstra, E. Haddeman, and J. A. Don, Some investigations on the role of prostacyclin in thromboregulation, Thromb.Res. 12:367 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    N. L. Baenziger, M. J. Dillender, and P. W. Majerus, Culture human skin fibroblasts and arterial cells produce a labile platelet inhibitory prostaglandin, Biochem.Biophys.Res.Comm. 78:294 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    R. Ross and J. A. Glomset, The pathogenesis of atherosclerosis, N.Engl.J.Med. 295:369 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    J. Larrue, M. Rigaud, D. Daret, J. Demond, J. Durand, and H. Bricaud, Prostacyclin production by cultured smooth muscle cells from atherosclerotic rabbit aorta, Nature 285:480 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    W. C. Chang, S. I. Murota, J. Nakao, and H. Orimo, Age-related decrease in prostacyclin biosynthetic activity in rat aortic smooth muscle cells, Biochim.Biophys.Acta 620:159 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Larrue, G. Razaka, D. Daret, J. Demond, and H. Bricaud, Biosynthèse de la matrice extracellulaire dans les aires athéroscléreuses d’aortes de lapins in vitro, Arterial Wall 6: 85 (1980).PubMedGoogle Scholar
  11. 11.
    R. Ross, The smooth muscle cell. II. Growth of smooth muscle in culture and the formation of elastic fibers, J.Cell Biol. 50:172 (1971).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Aumailley, T. Krieg, J. Larrue, and H. Bricaud, Synthesis of collagen in atherosclerosis. Studies in organ and cell culture, Arterial Wall 4:289 (1978).Google Scholar
  13. 13.
    J. Larrue, B. Dorian, J. Demond-Henri, and H. Bricaud, Endogenous arachidonic acid metabolism by cultured arterial smooth muscle cells, Biochem.Biophys.Res.Comm. 1011:861 (1981).CrossRefGoogle Scholar
  14. 14.
    J. Larrue, C. Leroux, D. Daret, and H. Bricaud, Decreased prostaglandin production in cultured smooth muscle cells from atherosclerotic rabbit aorta, Biochim.Biophys.Acta 710:257 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Moncada, R. J. Gryglewski, S. Bunting, and R. J. Vane, A lipid peroxyde inhibits the enzyme in blood vessels microsomes that generates from prostaglandin endoperoxydes the substance which prevents platelet aggregation, Prostaglandins 12:715 (1976).PubMedGoogle Scholar
  16. 16.
    J. E. Greenwald, J. R. Bianchine, and L. K. Wong, The production of the arachidonate metabolite HETE in vascular tissue, Nature 281:588 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    E. A. Ham, R. W. Egan, D. D. Soderman, P. H. Gale, and F. A. Kuchl Jr., Peroxidase-dependant deactivation of prostacyclin synthetase, J.Biol.Chem. 254:2191 (1979).PubMedGoogle Scholar
  18. 18.
    J. Turck, A. Wyche, and P. Needleman, Inactivation of vascular prostacyclin synthetase by platelet lipoxygenase products, Biochem.Biophys.Res.Comm. 95:1628 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • J. Larrue
    • 1
  • D. Daret
    • 1
  • B. Dorian
    • 1
  • J. Henri
    • 1
  • H. Bricaud
    • 1
  1. 1.U. 8 de recherches de CardiologieI.N.S.E.R.M.PessacFrance

Personalised recommendations