Advertisement

Cardiology pp 33-43 | Cite as

Biochemical Mechanisms of Altered Metabolism in Ischemic Heart

  • Howard E. Morgan

Abstract

Oxygen deficiency in heart muscle is most commonly induced by reduction in coronary flow, referred to as ischemia. As contrasted to hypoxia or anoxia in which flow of blood with low or zero oxygen tension is maintained, ischemia leads to accumulation of metabolic products that further modify rates of biochemical reactions. After periods of severe ischemia ranging from 30 minutes to 1 hour or more, irreversible damage occurs. Damage of this severity is characterized by disruption of the plasma membrane that is preceded by swelling of both the cell and mitochondria. Concurrently, the myofibrils and intercellular junctions are disrupted, and there is margination of nuclear chromatin. Reperfusion of an irreversibly-injured cell leads to accumulation of Ca++ within the mitochondria and failure to recover contractile activity.

Keywords

Lysosomal Enzyme Heart Muscle Citric Acid Cycle Autophagic Vacuole Altered Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. Jennings, and C. E. Ganote, Mitochondrial structure and function in acute myocardial ischemic injury, Circ. Res. 38: Suppl 1:180–191 (1976).Google Scholar
  2. 2.
    C. deDuve, and H. Beaufay, Tissue fractionation studies, Influence of ischemia on the state of some bound enzymes in rat liver, Biochem. J. 73: 610–616 (1959).Google Scholar
  3. 3.
    E. G. Leighty, C.D. Stoner, M. M. Ressallat, G. T. Passananti, and H. D. Sirak, Effects of acute asphyxia and deep hypothermia on the state of binding of lysosomal acid hydrolases in canine cardiac muscle, Circ. Res. 21: 59–64 (1967).CrossRefPubMedGoogle Scholar
  4. 4.
    M. A. Riccuitti, Lysosomes and myocardial cellular injury. Am J. Cardio. 30: 498–502 (1972).CrossRefGoogle Scholar
  5. 5.
    S. Hoffstein, G. Weissman, and A. C. Fox, Lysosomes in myocardial infarction: Studies by means of cytochemistry and subcellular fractionation with observations on the effects of methylprednisolone, Circulation 53: Suppl 1:134–140 (1976).Google Scholar
  6. 6.
    L. P. McAllister, B. L. Munger, and J. R. Neely, Electron microscopic observations and acid phosphatase activity in the ischemic rat heart, J. Mol. Cell. Cardiol 9: 353–364 (1977).CrossRefGoogle Scholar
  7. 7.
    B. Chua, R. L. Kao, D. E. Rannels, and H. E. Morgan, Inhibition of protein degradation by anoxia and ischemia in perfused rat hearts, J. Biol. Chem. 254: 6617–6623 (1979).PubMedGoogle Scholar
  8. 8.
    J. R. Neely, and H. E. Morgan, Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann. Rev. Physiol. 36: 413–459 (1974).CrossRefGoogle Scholar
  9. 9.
    K. F. LaNoue, and A. C. Schoolwerth, Metabolite transport in mitochondria, Ann. Rev. Biochem. 48:871–922 (1979).CrossRefPubMedGoogle Scholar
  10. 10.
    S. Mochizuki, and J. R. Neely, Control of glyceraldehyde-3-P dehydrogenase in cardiac muscle, J. Mol. Cell Cardiol. 11: 221–236 (1979).CrossRefPubMedGoogle Scholar
  11. 11.
    M. J. Rovetto, W. F. Lamberton, and J. R. Neely, Mechanisms of glycolytic inhibition in ischemic rat hearts, Circ. Res. 37: 742–751 (1975).CrossRefPubMedGoogle Scholar
  12. 12.
    J. R. Neely, J. T. Whitmer, and M. J, Rovetto, Effect of coronary blood flow on glycolytic flux and intracellular pH in isolated rat hearts, Circ. Res. 37: 733–741 (1975).CrossRefPubMedGoogle Scholar
  13. 13.
    M. F. Oliver, V. A. Kurien, and T. W. Greenwood, Relation between serum-free fatty acids and arrhythmias and death after acute myocardial infarction, Lancet 1: 710–714 (1968).CrossRefPubMedGoogle Scholar
  14. 14.
    J. A. Idell-Wenger, and J. R. Neely, Regulation of uptake and metabolism of fatty acids by muscle, in: “Disturbances in Lipid and Lipoprotein Metabolism,” J. M. Dietschy, A. M. Gotto Jr., and J. A. Ontko, eds., American Physiological Society, Bethesda, pp 269–284 (1978).Google Scholar
  15. 15.
    J. W. DeJong, and W. C. Hulsman, A comparative study of palmitoyl CoA synthetase activity in rat liver, heart and gut mitochondrial and microsomal preparation, Biochem Biophys Acta 197: 127–135 (1970).CrossRefGoogle Scholar
  16. 16.
    J. W. DeJong, and W. C., Hulsman, Effects of Nagarse, adenosine and hexokinase on palmitate activation and oxidation, Biochem. Biophys. Acta 210: 499–501 (1970).CrossRefGoogle Scholar
  17. 17.
    S. V. Pande, Reversal by CoA of palmityl-CoA inhibition of long chain acyl-CoA synthetase activity, Biochem Biophys. Acta 306: 15–20 (1973).CrossRefPubMedGoogle Scholar
  18. 18.
    J. F. Oram, J. I. Wenger, and J. R. Neely, Regulation of long chain fatty acid activation in heart muscle, J. Biol. Chem. 250: 73–78 (1975).PubMedGoogle Scholar
  19. 19.
    H. H. Chong, and S. V. Pande, On the specificity of the inhibition of adenine nucleotide translocase by long chain acyl-coenzyme A esters, Biochem. Biophys. Acta 369:86–94 (1974).CrossRefGoogle Scholar
  20. 20.
    B. Chua, and E. Shrago, Reversible inhibition of adenine nucleotide translocation by long chain acyl CoA esters in bovine heart mitochondria and inverted submitochondrial particles, J. Biol. Chem. 252:6711–6714 (1977).PubMedGoogle Scholar
  21. 21.
    F. Morel, G. Lauquin, J. Lunardi, J. Duszynski, and P. V. Vignais An appraisal of the functional significance of the inhibitory effect of long chain acyl-CoAs on mitochondrial transports, FEBS Lett.39:133–138 (1974).CrossRefPubMedGoogle Scholar
  22. 22.
    J. M. J. Lamers, and W. C. Hulsmann, Inhibition of (Na+ + Ka+)- stimulated ATPase of heart by fatty acids, J. Mol. Cell. Card. 9: 343–346 (1977).CrossRefGoogle Scholar
  23. 23.
    J. M. Wood, B. Bush, B. J. R. Pitts, and A. Schwartz, Inhibition of bovine heart Na+, K+ — ATPase by palmitylcarnitine and palmityl-CoA, Biochem. Biophys. Res. Commun. 74:677–684 (1977).CrossRefPubMedGoogle Scholar
  24. 24.
    R. Kao, D. E. Rannels, and H. E. Morgan, Effects of anoxia and ischemia on protein synthesis in perfused rat hearts, Circ. Res. 38: Suppl 1: 124–130 (1976).Google Scholar
  25. 25.
    H. E. Morgan, D. E. Rannels, and E. E. McKee, Protein metabolism of the heart, in: “Handbook of Physiology — The Cardiovascular System,” R. M. Berne, ed., American Physiological Society, Bethesa, pp 845–871 (1979).Google Scholar
  26. 26.
    H. E. Morgan, B. Chua, and C. J. Beinlich, Regulation of protein degradation in heart, in: “Degradative Processes in Heart and Skeletal Muscle,” K. Wildenthal, ed., North Holland Biomedical Press, Amsterdam, pp 87–112 (1980).Google Scholar
  27. 27.
    K. Wildenthal, Lysosomes and lysosomal enzymes in the heart, in: “Lysosomes in Biology and Pathology,” J. T. Dingle and R. T. Deans, eds., Elsevier Publishing Company, Inc., New York, pp 167–190 (1975).Google Scholar
  28. 28.
    D. E. Rannels, R. Kao, and H. E. Morgan, Effect of insulin on protein turnover in heart muscle, J. Biol. Chem. 250: 1694–1701 (1975).PubMedGoogle Scholar
  29. 29.
    L. S. Jefferson, D. E. Rannels, B.LL. Munger, and H. E. Morgan, Insulin in the regulation of protein turnover in heart and skeletal muscle, Fed. Proc. 33: 1098–1104 (1974).PubMedGoogle Scholar
  30. 30.
    E. H. Williams, R. L. Kao, and H. E. Morgan, Protein degradation and synthesis during recovery from myocardial ischemia, Am. J. Physiol. (Endocrinol. Metab. 3) 240: E268–E273 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Howard E. Morgan
    • 1
  1. 1.Department of Physiology The Milton S. Hershey Medical CenterThe Pennsylvania State UniversityHersheyUSA

Personalised recommendations