Skip to main content

Biochemical Mechanisms of Altered Metabolism in Ischemic Heart

  • Chapter
Cardiology
  • 75 Accesses

Abstract

Oxygen deficiency in heart muscle is most commonly induced by reduction in coronary flow, referred to as ischemia. As contrasted to hypoxia or anoxia in which flow of blood with low or zero oxygen tension is maintained, ischemia leads to accumulation of metabolic products that further modify rates of biochemical reactions. After periods of severe ischemia ranging from 30 minutes to 1 hour or more, irreversible damage occurs. Damage of this severity is characterized by disruption of the plasma membrane that is preceded by swelling of both the cell and mitochondria. Concurrently, the myofibrils and intercellular junctions are disrupted, and there is margination of nuclear chromatin. Reperfusion of an irreversibly-injured cell leads to accumulation of Ca++ within the mitochondria and failure to recover contractile activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. B. Jennings, and C. E. Ganote, Mitochondrial structure and function in acute myocardial ischemic injury, Circ. Res. 38: Suppl 1:180–191 (1976).

    Google Scholar 

  2. C. deDuve, and H. Beaufay, Tissue fractionation studies, Influence of ischemia on the state of some bound enzymes in rat liver, Biochem. J. 73: 610–616 (1959).

    CAS  Google Scholar 

  3. E. G. Leighty, C.D. Stoner, M. M. Ressallat, G. T. Passananti, and H. D. Sirak, Effects of acute asphyxia and deep hypothermia on the state of binding of lysosomal acid hydrolases in canine cardiac muscle, Circ. Res. 21: 59–64 (1967).

    Article  CAS  PubMed  Google Scholar 

  4. M. A. Riccuitti, Lysosomes and myocardial cellular injury. Am J. Cardio. 30: 498–502 (1972).

    Article  Google Scholar 

  5. S. Hoffstein, G. Weissman, and A. C. Fox, Lysosomes in myocardial infarction: Studies by means of cytochemistry and subcellular fractionation with observations on the effects of methylprednisolone, Circulation 53: Suppl 1:134–140 (1976).

    Google Scholar 

  6. L. P. McAllister, B. L. Munger, and J. R. Neely, Electron microscopic observations and acid phosphatase activity in the ischemic rat heart, J. Mol. Cell. Cardiol 9: 353–364 (1977).

    Article  Google Scholar 

  7. B. Chua, R. L. Kao, D. E. Rannels, and H. E. Morgan, Inhibition of protein degradation by anoxia and ischemia in perfused rat hearts, J. Biol. Chem. 254: 6617–6623 (1979).

    CAS  PubMed  Google Scholar 

  8. J. R. Neely, and H. E. Morgan, Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann. Rev. Physiol. 36: 413–459 (1974).

    Article  CAS  Google Scholar 

  9. K. F. LaNoue, and A. C. Schoolwerth, Metabolite transport in mitochondria, Ann. Rev. Biochem. 48:871–922 (1979).

    Article  CAS  PubMed  Google Scholar 

  10. S. Mochizuki, and J. R. Neely, Control of glyceraldehyde-3-P dehydrogenase in cardiac muscle, J. Mol. Cell Cardiol. 11: 221–236 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. M. J. Rovetto, W. F. Lamberton, and J. R. Neely, Mechanisms of glycolytic inhibition in ischemic rat hearts, Circ. Res. 37: 742–751 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. J. R. Neely, J. T. Whitmer, and M. J, Rovetto, Effect of coronary blood flow on glycolytic flux and intracellular pH in isolated rat hearts, Circ. Res. 37: 733–741 (1975).

    Article  CAS  PubMed  Google Scholar 

  13. M. F. Oliver, V. A. Kurien, and T. W. Greenwood, Relation between serum-free fatty acids and arrhythmias and death after acute myocardial infarction, Lancet 1: 710–714 (1968).

    Article  CAS  PubMed  Google Scholar 

  14. J. A. Idell-Wenger, and J. R. Neely, Regulation of uptake and metabolism of fatty acids by muscle, in: “Disturbances in Lipid and Lipoprotein Metabolism,” J. M. Dietschy, A. M. Gotto Jr., and J. A. Ontko, eds., American Physiological Society, Bethesda, pp 269–284 (1978).

    Google Scholar 

  15. J. W. DeJong, and W. C. Hulsman, A comparative study of palmitoyl CoA synthetase activity in rat liver, heart and gut mitochondrial and microsomal preparation, Biochem Biophys Acta 197: 127–135 (1970).

    Article  CAS  Google Scholar 

  16. J. W. DeJong, and W. C., Hulsman, Effects of Nagarse, adenosine and hexokinase on palmitate activation and oxidation, Biochem. Biophys. Acta 210: 499–501 (1970).

    Article  CAS  Google Scholar 

  17. S. V. Pande, Reversal by CoA of palmityl-CoA inhibition of long chain acyl-CoA synthetase activity, Biochem Biophys. Acta 306: 15–20 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. J. F. Oram, J. I. Wenger, and J. R. Neely, Regulation of long chain fatty acid activation in heart muscle, J. Biol. Chem. 250: 73–78 (1975).

    CAS  PubMed  Google Scholar 

  19. H. H. Chong, and S. V. Pande, On the specificity of the inhibition of adenine nucleotide translocase by long chain acyl-coenzyme A esters, Biochem. Biophys. Acta 369:86–94 (1974).

    Article  Google Scholar 

  20. B. Chua, and E. Shrago, Reversible inhibition of adenine nucleotide translocation by long chain acyl CoA esters in bovine heart mitochondria and inverted submitochondrial particles, J. Biol. Chem. 252:6711–6714 (1977).

    CAS  PubMed  Google Scholar 

  21. F. Morel, G. Lauquin, J. Lunardi, J. Duszynski, and P. V. Vignais An appraisal of the functional significance of the inhibitory effect of long chain acyl-CoAs on mitochondrial transports, FEBS Lett.39:133–138 (1974).

    Article  CAS  PubMed  Google Scholar 

  22. J. M. J. Lamers, and W. C. Hulsmann, Inhibition of (Na+ + Ka+)- stimulated ATPase of heart by fatty acids, J. Mol. Cell. Card. 9: 343–346 (1977).

    Article  CAS  Google Scholar 

  23. J. M. Wood, B. Bush, B. J. R. Pitts, and A. Schwartz, Inhibition of bovine heart Na+, K+ — ATPase by palmitylcarnitine and palmityl-CoA, Biochem. Biophys. Res. Commun. 74:677–684 (1977).

    Article  CAS  PubMed  Google Scholar 

  24. R. Kao, D. E. Rannels, and H. E. Morgan, Effects of anoxia and ischemia on protein synthesis in perfused rat hearts, Circ. Res. 38: Suppl 1: 124–130 (1976).

    Google Scholar 

  25. H. E. Morgan, D. E. Rannels, and E. E. McKee, Protein metabolism of the heart, in: “Handbook of Physiology — The Cardiovascular System,” R. M. Berne, ed., American Physiological Society, Bethesa, pp 845–871 (1979).

    Google Scholar 

  26. H. E. Morgan, B. Chua, and C. J. Beinlich, Regulation of protein degradation in heart, in: “Degradative Processes in Heart and Skeletal Muscle,” K. Wildenthal, ed., North Holland Biomedical Press, Amsterdam, pp 87–112 (1980).

    Google Scholar 

  27. K. Wildenthal, Lysosomes and lysosomal enzymes in the heart, in: “Lysosomes in Biology and Pathology,” J. T. Dingle and R. T. Deans, eds., Elsevier Publishing Company, Inc., New York, pp 167–190 (1975).

    Google Scholar 

  28. D. E. Rannels, R. Kao, and H. E. Morgan, Effect of insulin on protein turnover in heart muscle, J. Biol. Chem. 250: 1694–1701 (1975).

    CAS  PubMed  Google Scholar 

  29. L. S. Jefferson, D. E. Rannels, B.LL. Munger, and H. E. Morgan, Insulin in the regulation of protein turnover in heart and skeletal muscle, Fed. Proc. 33: 1098–1104 (1974).

    CAS  PubMed  Google Scholar 

  30. E. H. Williams, R. L. Kao, and H. E. Morgan, Protein degradation and synthesis during recovery from myocardial ischemia, Am. J. Physiol. (Endocrinol. Metab. 3) 240: E268–E273 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morgan, H.E. (1984). Biochemical Mechanisms of Altered Metabolism in Ischemic Heart. In: Chazov, E.I., Smirnov, V.N., Oganov, R.G. (eds) Cardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1824-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1824-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1826-3

  • Online ISBN: 978-1-4757-1824-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics