Advertisement

Cardiology pp 297-307 | Cite as

Pathogenetic Mechanisms in Essential Hypertension

  • Franz H. Messerli
  • Edward D. Frohlich

Abstract

Major parts of the etiology and pathogenesis of hypertension remain fragmentary and hypothetical. Over the past few years,1–5 investigative attention has focused more and more on the hypothesis of Dah16 that a circulating natriuretic substance might be the culprit of the increase in arterial pressure. This concept proposes that a genetic defect of sodium metabolism causing a discrete positive sodium balance might stimulate secretion of a naturiuretic hormone. Thus, normal sodium balance in the prehypertensive patient could be achieved by continuous high levels of naturiuretic hormone. However, sodium transport inhibition would occur not only along the nephron but in other tissues as wel1.4,7,8 In vascular smooth muscle it would increase the reactivity and tone of arteriolar and venous smooth muscle, thereby elevating arterial pressure and diminishing the venous compliance. Constriction of capacitance vessels would, in turn, shift the total blood volume from the periphery toward the cardiopulmonary area. This expansion of cardiopulmonary volume would further perpetuate the secretion of the sodium transport inhibitor from the hypothalamus (even in the presence of a normal or contracted total blood volume) and a vicious circle would ensue.

Keywords

Cardiac Output Essential Hypertension Total Peripheral Resistance Total Blood Volume Borderline Hypertension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. J. Haddy and H. W. Overbeck, The role of humoral agents in volume expanded hypertension. Life Sci. 19:935–948 (1976).PubMedCrossRefGoogle Scholar
  2. 2.
    M. P. Blaustein. Sodium ions, calcium ions, blood pressure regulation, and hypertension: A reassessment and a hypothesis. Am J. Physiol. 232: C165–C173 (1977).Google Scholar
  3. 3.
    H. E. deWardener, G. A. MacGregor; Dahl’s hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: Its possible role in essential hypertension. Kidney Int. 18: 1–9 (1980).CrossRefGoogle Scholar
  4. 4.
    L. Poston, R. B. Sewell, S. P. Wilkinson et al, Evidence for a circulating sodium transport inhibitor in essential hypertension. Br. Med J. 282: 847–849, (1981)CrossRefGoogle Scholar
  5. 5.
    G. A. MacGregor, S. Fenton, J. Alaghband-Zadeh et al, Evidence for a raised concentration of a circulating sodium transport inhibitor in essential hypertension. Br. Med. J. 283 1355–1357 (1981).CrossRefGoogle Scholar
  6. 6.
    L. K. Dahl, K. D. Knudsen, J. Iwai; Humoral transmission of hypertension. Circulation Res 1 (Suppl. 24/25): 21–31, (1969).Google Scholar
  7. 7.
    E. Ambrosioni, F. C. Costa, L. Montebugnoli, F. Tartagni, B. Magnani; Increased intralymphocytic sodium content in essential hypertension: An index of impaired Na+ cellular metabolism. Clin Sci 61:181–186, (1981).PubMedGoogle Scholar
  8. 8.
    P. Meyer, R. P. Garay, Genetic markers in essential hypertension. Clin Exp Hyper 3:4, (1981).Google Scholar
  9. 9.
    B. Falkner, H. Kushner, B. Onesti, E. T. Anselakos, Cardiovascular characteristics in adolescents who develop essential hypertension. Hypertension 3(5): 521–527, (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    W. McCrory, A. A. Klein, R. A. Rosenthal, Blood pressure, heart rate, and plasma catecholamines in normal and hypertensive children and their siblings at rest and after standing. Hypertension 4(4):507–513 (1982)PubMedCrossRefGoogle Scholar
  11. 11.
    J. Widimsky, M. D. Fejfarova, Z. Fejfar, Changes in cardiac output in hypertensive disease. Cardiologia 31:381,(1957).PubMedCrossRefGoogle Scholar
  12. 12.
    E. D. Frohlich, V. J. Kozul, R. C. Tarazi, H. P. Dustan, Physiological comparison of labile and essential hypertension. Circ Res 27:55, (1970).PubMedGoogle Scholar
  13. 13.
    R. Sannerstedt, Hemodynamic response to exercise in patients with essential hypertension. Acta Med Scand 180 (suppl 458):1, (1966).Google Scholar
  14. 14.
    O. Lund-Johansen, Hemodynamics in early essential hypertension. Acta Med Scand 181 (suppl 482): 1, (1967).Google Scholar
  15. 15.
    M. E. Safar, J. P. Fendler, B. Weil, J. M. Idatte, P. Veauvemayr, P. Milliez, Etude hemodynamique de l’hypertensioin arterielle labile. Presse Med 78:111 (1970).PubMedGoogle Scholar
  16. 16.
    S. Julius, A. V. Pascual, R. Sannerstedt, C. Mitchell, Relationship between cardiac output and peripheral resistance in borderline hypertension. Circulation 43:382 (1971)PubMedCrossRefGoogle Scholar
  17. 17.
    M. E. Ulrych, E. D. Frohlich, R. C. Tarazi, H. P. Dustan, I. H. Page, Cardiac output and distribution of blood volume in central and peripheral circulations in hypertensive and normotensive man. Br Heart J 31:370 (1969).CrossRefGoogle Scholar
  18. 18.
    J. M. Kioschos, W. M. Kirkendall, M. R. Valenca, A. E. Fitz, Unilateral renal hemodynamics and characteristics of dyedilution curves in patients with essential hypertension and renal disease. Circulation 35:229 (1967).PubMedCrossRefGoogle Scholar
  19. 19.
    F. H. Messerli, E. D. Frohlich, D. H. Suarez, et al, Borderline hypertension: Relationship between age, hemodynamics and circulating catecholamines. Circulation 64:760–764 (1981)PubMedCrossRefGoogle Scholar
  20. 20.
    N. K. Hollenberg, J. P. Merrill, Intrarenal perfusion in the young “essential” hypertensive: A subpopulation resistant to sodium restriction. Trans Assoc Am Physicians 83:93 (1970).PubMedGoogle Scholar
  21. 21.
    F. H. Messerli, H. O. Ventura, E. Reisin et al, Borderline hypertension and obesity: Two prehypertensive states with elevated cardiac output. Circulation 66: 55–60, (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    J. G. R. deCarvalho, F. H. Messerli, E. D. Frohlich, Mitral valve prolapse and borderline hypertension. Hypertension 1:518–522, (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    C. N. Ellis, S. Julius, Role of central blood volume in hyperkinetic borderline hypertension. Br Heart J 35:450–455 (1973).PubMedCrossRefGoogle Scholar
  24. 24.
    O. Bertel, F. R. Buhler, W. Kiowski, B. E. Lutold, Decreased beta-adrenergic responsiveness as related to age, blood pressure, and plasma catecholamines in patients with essential hypertension. Hypertension 2:180, (1980).CrossRefGoogle Scholar
  25. 25.
    Y. Miura, K. Kobayashi, H. Sakuma, H. Tomioka, M. Adachi, K. Yoshinaga, Plasma noradrenaline concentrations and haemodynamics in the early stage of essential hypertension. Clin Sci and Mol Med, 55 (Suppl. 4): 69s-71s, (1978).Google Scholar
  26. 26.
    E. D. Frohlich, Hemodynamics of hypertension. In: Jacques Genest, Erick Koiw and Otto Kuchel (eds.) “Hypertension”, New York, McGraw-Hill, (1977).Google Scholar
  27. 27.
    S. Julius, J. Conway, Hemodynamic studies in patients with borderline blood pressure elevation. Circulation 38: 282–288, (1968).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Julius, M. Elser, Autonomic nervous cardiovascular regulation in borderline hypertension. Am J. Cardiol 36: 685–695, (1975).PubMedCrossRefGoogle Scholar
  29. 29.
    S. Julius, Abnormalities of autonomic nervous control in borderline hypertension. Schweiziersche Medizinische Wochenschrift, 106: 1698–1705, (1976).Google Scholar
  30. 30.
    S. Heyden, H. A. Tyroler, C. G. Hames, et al, Diet treatment of obese hypertensives. Clin Sci Mol Med 45:209s, (1973).Google Scholar
  31. 31.
    W. B. Kannel, N. Brand, J. J. Skinner Jr., T. R. Dawber, P. M. McNamara, The relation of adiposity to blood pressure and development of hypertension. The Framingham study. Ann Intern Med 67:48, (1967).PubMedCrossRefGoogle Scholar
  32. 32.
    J. B. Langston, A. C. Guyton, B. H. Douglas, P. E. Dorsett, Effect of changes in salt intake on arterial pressure and renal function in partially nephrectomized dogs. Circ Res 12: 508–513, (1963).CrossRefGoogle Scholar
  33. 33.
    A. W. Cowley Jr., A. C. Guyton, Baroreceptor reflex effects on transient and steady-state hemodynamics of salt-loading hypertension in dogs. Circ Res 36:536–546, (1975).PubMedCrossRefGoogle Scholar
  34. 34.
    A. C. Guyton, The relationship of cardiac output and arterial pressure control. Circulation 64:1079–1088, (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    Y. A. Weiss, M. E. Safar, G. M. London, A. C. Simon, J. A. Levenson, P. M. Milliez, Repeat hemodynamic determinations in borderline hypertension. Am J Med 64:382, (1978).PubMedCrossRefGoogle Scholar
  36. 36.
    A. R. Cournand, L. Riley, E. S. Breed, W. F. Baldwin, D. W. Richards Jr, Measurements of cardiac output in man using the technique of catherization of the right auricle or ventricle. J. Clin Invest 24–106 (1945).Google Scholar
  37. 37.
    M. Brandfonbrener, M. Landowne, N. W. Shock, Changes in cardiac output with age. Circulation 12:557, (1955).PubMedCrossRefGoogle Scholar
  38. 38.
    R. C. Tarazi, E. D. Frohlich, H. P. Dustan. Plasma volume in man with essential hypertension. N Engl J Med 278:762–765, (1968).PubMedCrossRefGoogle Scholar
  39. 39.
    C. R. Lake, M. G. Ziegler, M. D. Coleman, I. J. Kopin, Ageadjusted plasma norepinephrine levels are similar in normotensive and hypertensive subjects. N Engl J Med 296:298, (1977).CrossRefGoogle Scholar
  40. 40.
    E. D. Frohlich, R. C. Tarazi, H. P. Dustan. Reexamination of the hemodynamics of hypertension. Am J Med Sc 257:9–23, (1969).CrossRefGoogle Scholar
  41. 41.
    R. Sannerstedt, Differences in haemodynamic pattern in various types of hypertension. Triangle 9:293–299, (1970).PubMedGoogle Scholar
  42. 42.
    P. Lund-Johansen, Haemodynamics in essential hypertension. Clin Sci 59:343s–354s, (1980).Google Scholar
  43. 43.
    F. C. Reubi, P. Weidmann, J. Hodler, P. T. Cottier, Changes in renal function in essential hypertension. Am J Med 64(4): 556–563, (1978).PubMedCrossRefGoogle Scholar
  44. 44.
    M. Friedman, A. Selzer, H. Rosenblum, The renal blood flow in hypertension as determined in patients with variable, with early and long-standing hypertension. JAMA 17: 92–95, (1941).CrossRefGoogle Scholar
  45. 45.
    F. H. Messerli, K. Sundgaard-Rise, E. Reisin, et al, Disparate cardiovascular obesity and arterial hypertension. Am J Med 1882 (in press).Google Scholar
  46. 46.
    F. H. Messerli, Cardiovascular effects of obesity and hypertension. Lancet 1167–1168, (1982).Google Scholar
  47. 47.
    O. Divitis, S. Fazio, M. Petitto, G. Maddalena, F. Contaldo, M. Mancini, Obesity and cardiac function. Circulation 64:447–482. (1981).Google Scholar
  48. 48.
    G. A. Perera, A. Damon, Height, weight, and their ratio in the accelerated form of primary hypertension. Arch Int Med 100:263–265, (1957).CrossRefGoogle Scholar
  49. 49.
    J. K. Alexander, J. R. Pettigrove, Obesity and congestive heart failure. Geriatrics 22:101–106, (1967).PubMedGoogle Scholar
  50. 50.
    T. Gordon, W. B. Kannel. Obesity and cardiovascular disease: the Framingham Study. Clin Endocrinol Metabol 5:367–374, (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Franz H. Messerli
    • 1
  • Edward D. Frohlich
    • 1
  1. 1.Department of Internal Medicine Section on Hypertensive DiseasesOchsner Medical InstitutionsNew OrleansUSA

Personalised recommendations