Advertisement

A Novelty in the Field of Titanium Powder Metallurgy

  • V. S. Ustinov
  • A. N. Petrunko
  • Yu. G. Olesov
  • R. K. Ognev

Abstract

When producing articles of titanium and titanium alloys by conventional technology, 70 to 80% of the input metal is lost as scrap between the ingot and the final product. The yield of usable product does not ordinarily exceed 20 to 25%.(1–2) Powder metal-lugy allows a four to five-fold increase in metal utilization and a one and one-half to two-fold decrease in labor consumption when machining articles, thus resulting in a savings of six to ten thousand roubles per ton of final product.(3)

Keywords

Titanium Powder Calcium Hydride Filter Element Titanium Sponge Powder Metallurgy Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dobatkin, V. I., Anoshkin, N. F., Andreev, A. L. et al, Titanium alloys ingots, M., Metallurgia, 1966.Google Scholar
  2. 2.
    Galitsky, B. A., Abelev, M. M., Shwartz, G. L. et al, Titanium and its alloys in chemical machine-building, M., Mashinostroinie, 1968.Google Scholar
  3. 3.
    Voroviev, B. J., Olesov, U.G., Ustinov, B. S. serial et al, Making of structural parts of titanium powder by the metalloceramic method “Tsvetniye metalli,” 1970, N 7, 65–66.Google Scholar
  4. 4.
    Olesov, U. G., Ognev, R. K. and Zapadnia, V. I., Large-sized titanium filters, “Tsvetniye matalli,” 1968, N12, 84–85.Google Scholar
  5. 5.
    Dobatkin, V. I., Anoshkin, N. F., Andreev, A. L. et al, Titanium alloys ingots, M., Metallurgia, 1966.Google Scholar
  6. 6.
    Shitikov, V. S., Sherstiuk, A. A., Ognev, R. K. et al, Complex deoxidizers made of titanium production, “Liteynoe proizvodstvo,” 1971, N6, 35–36.Google Scholar
  7. 7.
    Ognev, R. K., Zisman, E. B., Maximenko, V. M. et al, Corrosion resisting composition to protect constructional structures and technological equipment. “Industrial construction and engin-eering erections,” 1975, N3, 19–21.Google Scholar
  8. 8.
    Ustinov, V. S., Olesov, R. G., Antipin, L. N., Drosdenko, V. A., M. Metallurgia, 1973.Google Scholar
  9. 9.
    Garmata, V. A., Gulianitsky, B. S., Kramnik, V. U. et al, Titanium metallurgy. M., Metallurgia, 1968.Google Scholar
  10. 10.
    Rubtsov, A. N., Olesov, U. G., Antonova, M. I., Hydrogenation of titanium materials. Kiev, Naukova dumka, 1970.Google Scholar
  11. 11.
    Glazunov, S. G., Solonina, 0. P., Chereshneva, N. F, Dispersed granulation of metals and alloys. Selected Works. “Nonferrous metals alloys.” M. Nauka, 1972, 32–41.Google Scholar
  12. 12.
    Ustinov, V. S., Olesov, U. G., Antipin, L. N. et al, Pilot-industrial testing of titanium powders production by electrolysis of melts with a soluble anode. “Tsvetnije metalli, 1969, N12, 40–43.Google Scholar
  13. 13.
    Zhivov, L. I., Pavlov, V. A., Kolesnik, F. I. et al. Compaction of tube of metalloceramic titanium. “Tsvetniye metalli, 1971, N1, 69–70.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • V. S. Ustinov
    • 1
  • A. N. Petrunko
    • 1
  • Yu. G. Olesov
    • 1
  • R. K. Ognev
    • 1
  1. 1.Titanium InstituteUSSR

Personalised recommendations