Advertisement

Mechanical Properties of Titanium Alloy Plates

  • K. Rüdinger
  • A. Ismer

Abstract

The production of titanium alloy plates has grown considerably in the last years. Main applications are highly loaded integral parts of airframes and parts in aero-engine constructions (1,2). Further on heavy plates up to 100 mm thickness are fabricated for deep submergence vehicles (3,4), where also a high strength-density ratio is required besides weldability, corrosion and stress corrosion resistance as well as high fracture toughness.

Keywords

Fracture Toughness Titanium Alloy Tensile Property High Fracture Toughness Ti6Al4V Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    N.N. B-l’s Test Components in Production, AW $ ST. Vol. 99 (2, 7, 1973), p. 38/41.Google Scholar
  2. (2).
    Hotz, R., TU 144 Aimed at 30000 Hour of Service. AW $ ST. Vol. 99 (2, 7, 1973), p. 24/28.Google Scholar
  3. (3).
    Goode, R. J., Huber, R. W., Fracture Toughness Characteristics of Some Titanium Alloys for Deep Diving Vehicles, J. of Metals 17 (1965), p. 841/46.Google Scholar
  4. (4).
    Minkler, W. W., Feige, N., Titanium for Deep Submergence Vehicles, Undersea Technology, Vol. 6 (1965), p. 26/29.Google Scholar
  5. (5).
    Stocker, G., Erfährungen beim Elektronenstrahlschweißen dickwandiger Bauteile aus’der Titanlegierung Ti6A14V, geglüht. Schweißen und Schneiden 26 (1975), S. 91/93.Google Scholar
  6. (6).
    Zwicker, U., Titan und Titanlegierungen, Springer-Verlag, Berlin, Heidelberg, New York 1974. S. 114/95.Google Scholar
  7. (7).
    Rüdinger, K., Erzeugung und Qualitätssicherung von Titanwerkstoffen, DEW-Internationales Symposium, Krefeld, 21./22. Mai 1969.Google Scholar
  8. (8).
    Rüdinger, K., Ismer, A., Eiflug von Mikro-und Makrogefügeausbildung auf das Schwingfestigkeitsverhalten von TiA16V4 und TiA16V6Sn2. Proceedings of 3. Haus-colloquium Institut II fur Werkstoffeigenschaften der Universität Erlangen-Nurnberg, 11/12, Oct. 1972, Teil 3, Seite IX/1–16.Google Scholar
  9. Rüdinger, K., Ismer, A., Einfluß von Mikro-und Makrogefügeausbildung auf das Schwingfestigkeitsverhalten der Titanlegierung TiA16V4. 6. Internationaly Leichtmetalltagung Leoben/Wien 1975. Aluminum Verlag GmbH, Düsseldorf, 1975, S. 269 /70.Google Scholar
  10. (9).
    Gerhard, A., Knorr, W., Influence of Hot Working on the Properties of the Ti6A14V Alloy with Special Regard to Heavy Sections. Titanium Science and Technology, Plenum Press, New York-London, 1973, p. 463/75.Google Scholar
  11. (10).
    Billmann, F. R., Rudolph, Effects of Ti6A14V Alloy Metallurgical Structures on Ultrasonic Response Characteristics. Titanium Science and Technology, Plenum Press, New York-London, 1973, p. 693/705.Google Scholar
  12. (11).
    Wood, R. A., Favor, R. J., Titanium Alloys Handbook, MCIC Columbus Battelle Laboratories, Columbus, Ohio, USA, 1972.Google Scholar
  13. (12).
    Broichhausen, J.,van Kann, H., Influence of Forging Conditions on Fatigue Behavior of Ti-6A1–4V, Titanium Science and Technology, Plenum Press, New York-London, 1975, p. 1785/99.Google Scholar
  14. (13).
    Diebold, A., Hammer, M., Eigenschaften von Schmiedestücken aus der Legierung Ti6A14V nach dem Beta-Schmiedeverfahren. 6. Internationale Leichtmetalltagung Leoben/Wien 1975. Aluminum Verlag GmbH, Düsseldorf, 1975, p. 266 /68.Google Scholar
  15. (14).
    Margolin, B., Greenfield, M. A., Greenhut, I., Yield Strength, Microstructure and Fracture Toughness. Titanium Science and Technology, Plenum Press, New York-London, 1973, p. 1709/18.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • K. Rüdinger
    • 1
  • A. Ismer
    • 1
  1. 1.ContimetTitanium Division of Thyssen Edelstahlwerke AGKrefeldFed. Rep. Germany

Personalised recommendations