Advertisement

The Investigation of the Titanium Structure after Shock Wave Loading

  • A. R. Kutsar
  • V. N. German

Abstract

The analysis of the previous data on phase transformations under shock wave loading(1) shows that the same polymorphic transitions occur in short duration conditions of dynamic compression as in static high-pressure experiments. Until quite recently the α-ω transformation in titanium was not detected during shock loading.

Keywords

Shock Wave Shock Loading Dynamic Compression High Velocity Impact Titanium Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altshuler, L. V., The usage of shock waves in high pressure physics.–“Uspehi Fizicheskih Nauk”, 1965, 85, pp 233–246.Google Scholar
  2. 2.
    Bundy, F. P., G. E. Research Lab., Rept. N 63-R1–3481C, 1963.Google Scholar
  3. 3.
    Zilberstein, V. A., Nosova, G. I. and Estrin, E. I. a-w transformation in Ti and Zr.–“Fizika Metallov i Metallovedenie”, 1973, 35, pp. 584–589.Google Scholar
  4. 4.
    McQueen, R. G. The equation of state of solids from shock wave studies. - In: High Velocity Impact Phenomena, N.Y., 1970, pp. 341–343, 536.Google Scholar
  5. 5.
    Pashkov, P. 0. and Polyakova, U. U. About surface phenomena at high velocity impact of metals.–“Doklady AN SSSR”, 1972, pp. 332–337.Google Scholar
  6. 6.
    Koul, M. K. and Breedis, J. F., Strengthening of titanium alloys by shock deformation. In: The Science, Technology and Application of Titanium. Oxford, 1970, pp. 817–828.Google Scholar
  7. 7.
    Kutsar, A. R., German, V. N. and Nosova, G. I., a-w transformation in titanium and zirconium in shock waves. “Doklady AN SSR”, 1973, 213, pp. 81–34.Google Scholar
  8. 8.
    Dulin, J. N. et al. Phase transformation of boron nitride at dynamic compression. “Fizika Tverdogo Tela”, 1960, 11, pp. 1252–1257.Google Scholar
  9. 9.
    Usikov, M. P. and Zilberstein, V. A., The orientation relationship between the a and w-phases of titanium and zirconium. “Phys. Stst. Solid.”, 1973, 19, pp. 53–58.CrossRefGoogle Scholar
  10. 10.
    Kurdumov, G. V., Phenomena of quenching and tempering in steel. Moscow, “Metallurgia”, 1960, pp. 20–45.Google Scholar
  11. 11.
    Estrin, E. I., Kinetics of phase transformations under pressure and synthesis of high pressure phases. In: Problemy metallovedeniya i fiziki metallov. Moscow, “Metallurgia”, 1973, N12, pp. 6–13.Google Scholar
  12. 12.
    Kutsar, A. R., T-P diagram of hafnium and phase transitions in shock waves. “Fizika Metallov i Metallovedenie”, 1975, 40, pp. 787–793.Google Scholar
  13. 13.
    Urtiew, P. A. and Grover, R., Temperature deposition caused by shock interactions with material interfaces. “J. Appl. Phys.”, 1974, 45, pp. 140–145.CrossRefGoogle Scholar
  14. 14.
    Deribas, A. A., Physics of strengthening and welding by explosion. Novosibirsk, “Nauka”, 1972, pp. 106–110.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • A. R. Kutsar
    • 1
  • V. N. German
    • 1
  1. 1.I. P. Bardin Central Research Institute of Ferrous MetallurgyUSSR

Personalised recommendations