Advertisement

Biomechanics pp 196-260 | Cite as

Bio-viscoelastic Solids

  • Y. C. Fung

Abstract

Solids provide “body” to living organisms and are proper provinces of biomechanics. Some biosolids are more “elastic,” others are more “viscous”; altogether they are viscoelastic.

Keywords

Collagen Fiber Elastic Response Relaxation Function Relaxation Curve Strain Energy Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., and Stegun, A. (1964) Handbook of Mathematical Functions. National Bureau of Standards, Applied Math. Ser. 55, U.S. Government Printing Office, Washington, D.C.Google Scholar
  2. Alexander, R. M. (1968) Animal Mechanics. University of Washington Press, Seattle.Google Scholar
  3. Bauer, R. D., and Pasch, Th. (1971) Pflügers Arch. 330, 335–345.CrossRefGoogle Scholar
  4. Becker, E., and Föppl. O. (1928) Forschung aus dem Gebiete des Ingenieurwesens. V.D.I., No. 304.Google Scholar
  5. Becker, E., and Döring, W. (1939) Ferronmagnetismus. Springer, Berlin, Chap. 19. Bergel, D. H. (1961) J. Physiol. 156, 445–457.Google Scholar
  6. Becker, E., and Döring, W. (1939) Ferronmagnetismus. Springer, Berlin, Chap. 19. Bergel, D. H. (1961) J. Physiol. 156, 458–469.Google Scholar
  7. Biot, M. A. (1965) Mechanics of Incremental Deformations. Wiley, New York.Google Scholar
  8. Blatz, P. J., Chu, B. M., and Wayland, H. (1969) Trans. Soc. Rheol. 13, 83–102.CrossRefGoogle Scholar
  9. Bodner, S. R. (1968) In Mechanical Behavior of Materials under Dynamic Loads, Lindholm, U.S. (ed.). Springer, New York, pp. 176–190.CrossRefGoogle Scholar
  10. Buchtal, F., and Kaiser, E. (1951) The Rheology of the Cross Striated Muscle Fibre with Particular Reference to Isotonic Conditions. Det Kongelige Danske Videnskabernes Selskab, Copenhagen, Dan. Biol. Medd. 21, No. 7, pp. 318.Google Scholar
  11. Chen, H. Y. L., and Fung, Y. C. (1973) In 1973 Biomechanics Symposium. ASME Publ. No. AMD-2, American Society of Mechanical Engineers, New York, pp. 9–10.Google Scholar
  12. Ciferri, A. (1963) Trans. Faraday Soc. 59, 562–569.CrossRefGoogle Scholar
  13. Collins, R., and Hu, W. C. (1972) J. Biomech. 5, 333–337.CrossRefGoogle Scholar
  14. Cowan, P. M., North, A. C. T., and Randall, J. T. (1955) Symp. Soc. Exp. Biol. 9, 115–126.Google Scholar
  15. Dale, W. C., and Baer, E. (1974) J. Mater. Sci. 9, 369–382.ADSCrossRefGoogle Scholar
  16. Dale, W. C., Baer, E., Keller, A., and Kohn, R. R. (1972) Experientia 28, 1293–1295.CrossRefGoogle Scholar
  17. Diamant, J. Keller, A., Baer, E., Litt, M., and Arridge, R. G. C. (1972) Proc. Roy. Soc. London B 180 293–315.Google Scholar
  18. Dunn, F., Edmonds, P. D., and Fry, W. J. (1969) Ultrasound. In Biological Engineering, Schwan, H. P. (ed.) McGraw-Hill, New York, p. 205.Google Scholar
  19. Feughelman, M. (1963) Nature 200, 127–129.ADSCrossRefGoogle Scholar
  20. Flory, P. J., and Garrett, R. R. (1958) J. Am. Chem. Soc. 80, 4836–4845.CrossRefGoogle Scholar
  21. Fronek, K., Schmid-Schoenbein, G., and Fung, Y.C. (1976) J. Appl. Physiol. 40 (4), 634–637.Google Scholar
  22. Fung, Y. C. (1965) Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  23. Fung, Y. C. (1967) Am. J. Physiol. 213, 1532–1544.Google Scholar
  24. Fung, Y. C. (1968) Appl. Mech. Rev. 21, 1–20.Google Scholar
  25. Fung, Y. C. (1972) In Biomechanics: Its Foundations and Objectives, Fung, Y. C., Perrone, N., and Anliker, M. (eds.) Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  26. Fung, Y. C. (1973) Biorheology 10, 139–155.Google Scholar
  27. Fung, Y. C. (1975) Circulation Res. 37, 481–496.CrossRefGoogle Scholar
  28. Fung, Y. C. (1977) A First Course in Continuum Mechanics. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  29. Fung, Y. C. (1979) J. Biomech. Eng. Trans. ASME 101, 23–27.CrossRefGoogle Scholar
  30. Fung, Y. C., Tong, P., and Patitucci, P. (1978) J. Eng. Mech. ASCE 104, 201–224.Google Scholar
  31. Gathercole, L. J., Keller, A., and Shah, J. S. (1974) J. Microscopy 102, 95–105.CrossRefGoogle Scholar
  32. Green, A. E., and Adkins, J. E. (1960) Large Elastic Deformations. Oxford University Press, New York.MATHGoogle Scholar
  33. Guth, E., Wack., P. E., and Anthony, R. L. (1946) J. Appl. Phys. 17, 347–351.ADSCrossRefGoogle Scholar
  34. Hardung, V. (1952) Helv. Physiol. Pharm. Acta 10, 482–498.Google Scholar
  35. Harkness, R. D. (1966) Collagen. Sci. Progr. 54, 257–274.Google Scholar
  36. Harkness, M. L. R., and Harkness, R. D. (1959a) J. Physiol. 148, 524–547.Google Scholar
  37. Harkness, M. L. R., and Harkness, R. D. (1959b) Nature 183 (1), 821–822.Google Scholar
  38. Hearle, J. W. S. (1958) J. Polymer Sci. 28, 432–435.ADSCrossRefGoogle Scholar
  39. Hearle, J. W. S. (1963) J. Appl. Polymer Sci. 7 (1), 172–192.Google Scholar
  40. Hearle, J. W. S. (1963) J. Appl. Polymer Sci. 7 (1), 207–223.Google Scholar
  41. Hearle, J. W. S.: and Peters, R. H. (eds.) (1963) Fiber Structure. The Textile Institute and Butterworths, London.Google Scholar
  42. Hiltner, A., Nomura, S., and Baer, E. (1974) In Peptides, Polypeptides, and Proteins, Blout, Bovey, Goodman, and Lotan, (eds.). Wiley, New York.Google Scholar
  43. Hoppin, F. G., Lee, J. C., and Dawson, S. V. (1975) J. Appl. Physiol. 39, 742–751.Google Scholar
  44. Kastelic, J., Galeski, A., and Baer, E. (1978) J. Connective Tissue Res., 6, 11–23.CrossRefGoogle Scholar
  45. Kenedi, R. M., Gibson, T., and Daly, C. H. (1964) In Structure and Function of Connective and Skeletal Tissue, Jackson, S. F., Harkness, S. M., and Tristram, G. R. (eds.). Scientific Committee, St. Andrews, Scotland, pp. 388–395.Google Scholar
  46. Knopoff, L. (1965) In Physical Acoustics, Mason, W. P. (ed.). Academic Press, Inc, New York. Vol. IIIB, Chapter 7.Google Scholar
  47. Lai-Fook, S. J. (1977) J. Biomechanics, 10, 357–365.CrossRefGoogle Scholar
  48. Lai-Fook, S. J., Wilson, T. A., Hyatt, R. E., and Rodarte, J. R. (1976) J. Appl. Physiol. 40, 508–513.Google Scholar
  49. Lanczos, C. (1956) Applied Analysis. Prentice-Hall, Englewood Cliffs, N.J. Lanir, Y., and Fung, Y. C. (1974) J. Biomech. 7, 171–182.Google Scholar
  50. Lanczos, C. (1956) Applied Analysis. Prentice-Hall, Englewood Cliffs, N.J. Lanir, Y., and Fung, Y. C. (1974) J. Biomech. 7, 29–34.Google Scholar
  51. Lee, J. S., Frasher, W. G., and Fung, Y. C. (1967) Two-dimensional finite-deformation on experiments on dog’s arteries and veins. Tech. Rept. No. AFOSR 67–1980, University of California, San Diego, Calif.Google Scholar
  52. Lee, J. S., Frasher, W. G., and Fung, Y. C. (1968) J. Appl. Physiol. 25, 799–801.Google Scholar
  53. McElhaney, J. H. (1966) J. Appl. Physiol. 21, 1231–1236.Google Scholar
  54. Mason, W. P. (1969) A source of dissipation that produces an internal friction independent of the frequency. Rept. No. 61, contract NONR 266(91), Dept. of Civil Eng. and Eng. Mech., Columbia University, New York.Google Scholar
  55. Money, M. (1940) J. Appl. Phys. 11, 582–592.ADSCrossRefGoogle Scholar
  56. Morgan, F. R. (1960) J. Soc. Leather Trades Chem. 44, 171–182.Google Scholar
  57. Neubert, H. K. P. (1963) Aeronaut. Quart. 14, 187–197.Google Scholar
  58. Patel, D. J., Tucker, W. K., and Janicki, J. S. (1970) J. Appl. Physiol. 28, 578–582.Google Scholar
  59. Patel, D. J. and Vaishnav, R. N. (1972) In Cardiovascular Fluid Dynamics, Bergel, D. H. (ed.). Academic, New York, Vol. 2, pp. 1–64.Google Scholar
  60. Pinto, J., and Fung, Y. C. (1973) J. Biomech. 6, 617–630.CrossRefGoogle Scholar
  61. Pinto, J., and Fung, Y. C. (1973) J. Biomech. 6, 597–616.CrossRefGoogle Scholar
  62. Ridge, M. D., and Wright, V. (1964) Biorheo logy 2, 67–74.Google Scholar
  63. Rivlin, R. S. (1947) J. Appl. Phys. 18, 444–449.ADSCrossRefGoogle Scholar
  64. Rivlin, R. S., and Saunders, D. W. (1951) Phil. Trans. A. 243, 251–288.ADSMATHCrossRefGoogle Scholar
  65. Routbart, J. L., and Sack, H. S. (1966) J. Appl. Phys. 37, 4803–4805.ADSCrossRefGoogle Scholar
  66. Theodorsen, T., and Garrick, E. (1940) Mechanism offlutter. Rept. 685, U.S. Nat. Adv. Comm. Aeronaut.Google Scholar
  67. Tong, P., and Fung, Y. C. (1976) J. Biomech. 9, 649–657.CrossRefGoogle Scholar
  68. Torp, S., Arridge, R. G. C., Armeniades, C. D., and Baer, E. (1974) In Proc. 1974 Colston Conf, Dept. of Physics, University of Bristol, U.K., pp. 197–222.Google Scholar
  69. Torp, S., Baer, E., and Friedman, B. (1974) Proc. 1974 Colston Conf., pp. 223–250.Google Scholar
  70. Treloar, L. R. G. (1967) The Physics of Rubber Elasticity, 2nd ed. Oxford University Press, New York.Google Scholar
  71. Valanis, K. C., and Landel, R. I. (1967) J. Appl. Phys. 38, 2997–3002.ADSCrossRefGoogle Scholar
  72. Brocklin, J. D., and Ellis, D. (1965) Arch. Phys. Med. Rehab. 46, 369–375.Google Scholar
  73. Vawter, D., Fung, Y. C., and West, J. B. (1978) J. Appl. Physiol. 45 (2), 261–269.Google Scholar
  74. Vawter, D., Fung, Y. C., and West, J. B. (1979) J. Biomech. Eng., Trans. ASME 101, 38–45.CrossRefGoogle Scholar
  75. Veronda, D. R., and Westmann, R. A. (1970) J. Biomech. 3, 111–124.CrossRefGoogle Scholar
  76. Viidik, A. (1966) In Studies on the Anatomy and Function of Bone and Joints, Evans, F. G. (ed.). Springer, New York, pp. 17–39.CrossRefGoogle Scholar
  77. Viidik, A. (1973) Int. Rev. Connective Tissue Res. Academic, New York, Vol. 6. Viidik, A. (1977) Proc. Anatomisches Gessellschaft,72. Versammlung in Aachen.Google Scholar
  78. Wagner, K. W. (1913) Ann. Physik 40, 817–855.ADSMATHCrossRefGoogle Scholar
  79. Wertheim, M. G. (1847) Ann. Chimie Physique, Paris, Ser. 3, Vol. 21, pp. 385–414.Google Scholar
  80. Westerhof, N., and Noordergraaf, A. (1970) J. Biomech. 3, 357–379.CrossRefGoogle Scholar
  81. Wilson, T. A. (1972) J. of Appl. Physiol. 33, 472–478.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.University of California, San DiegoLa JollaUSA

Personalised recommendations