Advertisement

Biomechanics pp 139-173 | Cite as

The Rheology of Blood in Microvessels

  • Y. C. Fung

Abstract

The concept of viscosity has been discussed in Chapters 2 and 3. We have shown that the viscosity of whole blood is non-Newtonian. But the discussion so far has considered blood as a homogeneous fluid. We know, of course, that blood is not homogeneous: it is normally a concentrated mixture with almost half its volume occupied by suspended red blood cells. There are occasions when it is useful to consider blood as a homogeneous fluid, and there are other occasions when it is necessary to consider red blood cells as acting individually. For example, in studying the pulse waves in arteries whose diameters are many times larger than the red cell diameter, we can treat blood as a homogeneous fluid. On the other hand, in studying the flow of blood in capillary blood vessels whose diameters are about the same as the diameter of the red cells, we have to consider blood as a suspension.

Keywords

Apparent Viscosity Tube Diameter Relative Viscosity Entry Section Silicone Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbee, J. H., and Cokelet, G. R. (1971) Microvascular Res. 3, 6–21.CrossRefGoogle Scholar
  2. Benis, A. M., Chien, S., Usami, S., and Jan, K. M. (1973) J. Appl. Physiol. 34, 383–389.Google Scholar
  3. Braasch, D. (1967) Pflügers Arch. ges. Physiol. 296, 143–147.CrossRefGoogle Scholar
  4. Braasch, D. and Jennett, W. (1968) Pflügers Archiv. ges. Physiol. 302, 245–254.CrossRefGoogle Scholar
  5. Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A. (1978) The Mechanics of circulation. Oxford Univ. Press, New York.Google Scholar
  6. Chien, S. (1972) In Hemodilution: Theoretical Basis and Clinical Application, Messmer, K., and Schmid-Schoenbein, H. (eds.). Karger, Basel, pp. 1–45.Google Scholar
  7. Fahraeus, R. (1929) Physiol. Rev. 9, 241–274.Google Scholar
  8. Fahraeus, R., and Lindqvist, T. (1931) Am. J. Physiol. 96, 562–568. Fitz-Gerald, J. M. (1969a) Proc. Roy. Soc. London, B, 174, 193–227. Fitz-Gerald, J. M. (1969b) J. Appl. Physiol. 27, 912–918.Google Scholar
  9. Fitz-Gerald, J. M. (1972) In Cardiovascular Fluid Dynamics, Bergel, D. H. (ed.). Academic, New York, Vol. 2, Chap. 16, pp. 205–241.Google Scholar
  10. Fung, Y. C. (1969a) J. Biomechanics 2, 353–373.CrossRefGoogle Scholar
  11. Fung, Y. C. (1969b) Proc. Canad. Congr. Appl. Mechanics, May, 1969. University of Waterloo, Canada, pp. 433–454.Google Scholar
  12. Fung, Y. C. (1973) Microvascular Res. 5, 34–48.CrossRefGoogle Scholar
  13. Goldsmith, H. L. (1971) Biorheology 7, 235–242.Google Scholar
  14. Goldsmith, H. L. and Skalak, R. (1975) Ann. Rev. Fluid Mech. 7, 213–247. Gross, J. F., and Aroesty, J. (1972) Biorheology 9, 255–264.Google Scholar
  15. Haynes, R. H. (1960) Am. J. Physiol. 198, 1193–1200.Google Scholar
  16. Hochmuth, R. M., Maple, R. N., and Sutera, S. P. (1970) Microvascular Res 2 409419.Google Scholar
  17. Jay, A. W. C., Rowlands, S. and Skibo, L. (1972) Canad. J. Physiol. Pharmacol. 5, 1007–1013.CrossRefGoogle Scholar
  18. Johnson, P. C., and Wayland, H. (1967) Am. J. Physiol. 212, 1405–1415.Google Scholar
  19. Kot, P. (1971) Motion picture shown at the Annual Meeting of the Microcirculatory Society, Atlantic City, N.J., April, 1971.Google Scholar
  20. Lee, J. S. (1969) J. Biomechanics 2, 187–198.CrossRefGoogle Scholar
  21. Lee, J. S., and Fung, Y. C. (1969) Microvascular Res. 1, 221–243.CrossRefGoogle Scholar
  22. Lew, H. S., and Fung, Y. C. (1969a) Biorheology 6, 109–119. Lew, H. S., and Fung, Y. C. (1969b) J. Biomechanics 2, 105–119.Google Scholar
  23. Lew, H. S., and Fung, Y. C. (1970a) J. Biomechanics 3, 23–38. Lew, H. S., and Fung, Y. C. (1970b) Biophys. J. 10, 80–99. Lighthill, M. J. (1968) J. Fluid Mech. 34, 113–143.Google Scholar
  24. Lighthill, M. J. (1972) J. Fluid Mech. 52, 475–497.ADSMATHCrossRefGoogle Scholar
  25. Mason, S. G., and Goldsmith, H. L. (1969) In Circulatory and Respiratory Mass Transport. A ciba Foundation Symposium, Wolstenholme, G. E. W. and Knight, J. (eds.) Churchill, London, p. 105.Google Scholar
  26. Prothero, J., and Burton, A. C. (1961) Biophysical J. 1, 565–579; 2, 199–212; 2, 213, 222. 1962.ADSGoogle Scholar
  27. Segre, G., and Silberberg, A. (1962) J. Fluid Mech. 14, 136–157.ADSCrossRefGoogle Scholar
  28. Seshadri, V., Hochmuth, R. M., Croce, P. A., and Sutera, S. P. (1970) Microvascular Res. 2, 424–434.CrossRefGoogle Scholar
  29. Skalak, R. (1972) In Biomechanics: Its Foundations and Objectives, Fung, Y. C., Perrone, N., and Anliker, M. (eds.). Prentice-Hall, Englewood Cliffs, N.J., pp. 457–500.Google Scholar
  30. Skalak, R., Chen, P. H., and Chien, S. (1972) Biorheology 9, 67–82.Google Scholar
  31. Skalak, R. (1973) Bioreology 10, 229–238.Google Scholar
  32. Sobin, S. S., Tremer, H. M., and Fung, Y. C. (1970) Circulation Res. 26, 397–414.CrossRefGoogle Scholar
  33. Sobin, S. S., Fung, Y. C., Tremer, H. M., and Rosenquist, T. H. (1972) Circulation Res. 30, 440–450.CrossRefGoogle Scholar
  34. Sobin, S. S., Fung, Y. C., Tremer, H. M., and Lindal, R. G. (1979). Microvascular Res 17 (3, part 2, Abstract), p. S 87.Google Scholar
  35. Sutera, S. P. (1978) J. Biomech. Eng. Trans. ASME 100(3), 139–148. Sutera, S. P., and Hochmuth, R. M. (1968) Biorheology 5, 45–73.Google Scholar
  36. Sutera, S. P., Seshadri, V., Croce, P. A., and Hochmuth, R. M. (1970) Microvascular Res. 2, 420–442.CrossRefGoogle Scholar
  37. Svanes, K., and Zweifach, B. W. (1968) Microvascular Res. 1, 210–220.CrossRefGoogle Scholar
  38. Warrell, D. A., Evans, J. W., Clarke, R. O., Kingaby, G. P., and West, J. B. (1972) J. Appl. Physiol. 32, 346–356.Google Scholar
  39. Yen, R. T., and Fung, Y. C. (1973) J. Appl. Physiol. 35, 510–517. Yen, R. T., and Fung, Y. C. (1977) J. Appl. Physiol. 42 (4), 578–586.Google Scholar
  40. Yen, R. T., and Fung, Y. C. (1978) Am. J. of Physiol. 235 (2): H251 — H257.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.University of California, San DiegoLa JollaUSA

Personalised recommendations