Advertisement

Biomechanics pp 101-138 | Cite as

Red Blood Cells and Their Deformability

  • Y. C. Fung

Abstract

In the previous chapter we studied the flow properties of blood. In this chapter we turn our attention to the red blood cells. Red blood cells are the gas exchange units of animals. They deliver oxygen to the tissues of all organs, exchange with CO2, and return to the lung to unload CO2 and soak up O2 again. This is, of course, what circulation is all about. The heart is the pump, the blood vessels are the conduits, and the capillary blood vessels are the sites where gas exchange between blood and tissue or atmosphere takes place.

Keywords

Internal Pressure Pure Shear Stress Resultant Fluid Shear Stress Stretch Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, V., and Branton, D. (1977) J. Biol. Chem. 252, 2753–2763.Google Scholar
  2. Canham, P. B. (1970) J. Theoret. Biol. 26, 61–81.CrossRefGoogle Scholar
  3. Canham, P. B., and Burton, A. C. (1968) Circulation Res. 22, 405–422.CrossRefGoogle Scholar
  4. Chen, P., and Fung, Y. C. (1973) Microvascular Res. 6, 32–43.CrossRefGoogle Scholar
  5. Chien, S. (1972) In Hemodilution: Theoretical Basis and Clinical Application, Messmer, K., and Schmid-Schoenbein, H. (eds.). Karger, Basel.Google Scholar
  6. Chien, S., Usami, S., Dellenback, R. T., and Gregersen, M. I. (1967) Science 157, 827–829.ADSCrossRefGoogle Scholar
  7. Chien, S., Luse, S. A., Jan, K. M., Usami, S., Miller, L. H., and Fremount, H. (1971a) Proc. 6th European Conf. Microcirculation. Karger, Basel, pp. 29–34.Google Scholar
  8. Chien, S., Usami, S., Dellenback, R. J., and Bryant, C. A. (1971b). Biorheology 8, 35–57.Google Scholar
  9. Chien, S., Sung, K. L. P., Skalak, R., Usami, S., and Tozeren, A. (1978) Biophys. J. 24, 463–487.CrossRefGoogle Scholar
  10. Cokelet, G. R., and Meiselman, H. J. (1968) Science 162, 275–277.ADSCrossRefGoogle Scholar
  11. Dintenfass, L. (1968) Nature 219, 956–958.ADSCrossRefGoogle Scholar
  12. Evans, E., and Fung, Y. C. (1972) Microvascular Res. 4, 335–347.CrossRefGoogle Scholar
  13. Evans, E. A., and Hochmuth, R. M. (1976) Biophys. J. 16, 13–26.CrossRefGoogle Scholar
  14. Evans, E. A., Waugh, R., and Melnik, L. (1976) Biophys. J. 16, 585–595.ADSCrossRefGoogle Scholar
  15. Evans, E. A., and Skalak, R. (1979) Mechanics and Thermodynamics of Biomembranes. CRC Critical Reviews in Bioengineering. Vol 3, issues 3 & 4. CRC Press, Boca Raton, Fla.Google Scholar
  16. Flügge, W. (1960) Stresses in Shells. Springer-Verlag, Berlin.MATHCrossRefGoogle Scholar
  17. Fry, D. L. (1968) Circulation Res. 22, 165–197.CrossRefGoogle Scholar
  18. Fry, D. L. (1969) Circulation Res. 24, 93–108.CrossRefGoogle Scholar
  19. Fung, Y. C. (1966) Fed. Proc. Symposium on microcirculation, 25(6), Part I, 1761–1772.Google Scholar
  20. Fung, Y. C. (1968) Biomed. Sci. Instrumentation. 4, 310–320.Google Scholar
  21. Fung, Y. C., and Tong, P. (1968) J. Biophysics 8 (2), 175–198.CrossRefGoogle Scholar
  22. Gregersen, M. I., Bryant, C. A., Hammerle, W. E., Usami, S., and Chien, S. (1967) Science 157, 825–827.ADSCrossRefGoogle Scholar
  23. Graustein, W. C. (1935) Differential Geometry. Macmillan, New York.Google Scholar
  24. Gumbel, E. J. (1954) Statistical Theory of Extreme Value and Some Practical Applications. National Bureau of Standards, Applied Math Ser. 33. Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., pp. 1–51.Google Scholar
  25. Gumbel, E. J. (1958) Statistics of Extremes. Columbia University Press, New York.MATHGoogle Scholar
  26. Hochmuth, R. M., Marple, R. N., and Sutera, S. P. (1970) Microvascular Res. 2, 409–419.CrossRefGoogle Scholar
  27. Hochmuth, R. M., and Mohandas, N. (1972) J. Biomechanics 5, 501–509.CrossRefGoogle Scholar
  28. Hochmuth, R. M., Mohandas, N., and Blackshear, Jr., P. L. (1973) Biophys. J. 13, 747–762.ADSCrossRefGoogle Scholar
  29. Hochmuth, R. M., Worthy, P. R., and Evans, E. A. (1979) Biophys. J. 26, 101–114.CrossRefGoogle Scholar
  30. Hoeber, T. W., and Hochmuth, R. M. (1970) Trans. ASME Ser. D, J. Basic Eng. 92, 604.CrossRefGoogle Scholar
  31. Houchin, D. W., Munn, J. I., and Parnell, B. L. (1958) Blood, 13, 1185–1191.Google Scholar
  32. Katchalsky, A., Kedem, D., Klibansky, C., and DeVries, A. (1960) In Flow Properties of Blood and Other Biological Systems, Copley, A. L., and Stainsby, G. (eds.). Pergamon, New York, pp. 155–171.Google Scholar
  33. King, J. R. (1971) Probability Chart for Decision Making. Industrial Press, New York.Google Scholar
  34. Lingard, P. S. (1974) Microvascular Res. 8, 53–63, and 181–191.Google Scholar
  35. Lingard, P. S., and Whitmore, R. L. (1974) J. Colloid Interface Sci. 49, 119–127.CrossRefGoogle Scholar
  36. Marchesi, S. L., Steers, E., Marchesi, V. T., and Tillack, T. W. (1970) Biochemistry 9, 50–57.CrossRefGoogle Scholar
  37. Marchesi, V. T., Steers, E., Tillack, T. W., and Marchesi, S. L. (1969) In Red Cell Membrane, Jamieson, G. A. and Greenwalt, T. J. (eds.). Lippincott, Philadelphia, pp. 117.Google Scholar
  38. Norris, C. H. (1939) J. Cell. Comp. Physiol. 14, 117–113.CrossRefGoogle Scholar
  39. Ponder, E. (1948) Hemolysis and Related Phenomena. Grune & Stratton, New York.Google Scholar
  40. Rand, R. H., and Burton, A. C. (1964) Biophys. J. 4, 115–135; 303–316.Google Scholar
  41. Schmid-Schoenbein, G., Fung, Y. C., and Zweifach, B. E. (1975) Circulation Res. 36, 173–184.CrossRefGoogle Scholar
  42. Schmid-Schoenbein, H., and Wells, R. E. (1969) Science 165, 288–291. Schmidt-Nielsen, K., and Taylor, C. R. (1968) Science 162, 274–275.ADSGoogle Scholar
  43. Seifriz, W. (1927) Protoplasma 1, 345–365.CrossRefGoogle Scholar
  44. Singer, S. J. (1974) Ann. Rev. Biochem. 43, 805–833.CrossRefGoogle Scholar
  45. Singer, S. J., and Nicolson, G. L. (1972) Science 175, 720–731.ADSCrossRefGoogle Scholar
  46. Skalak, R. (1973) Biorheology 10, 229–238.Google Scholar
  47. Skalak, R., Tozeren, A., Zarda, R. P., and Chien, S. (1973) Biophys. J. 13, 245–264.Google Scholar
  48. Sobin, S. S., Lindal, R. G., Fung, Y. C., and Tremer, H. M. (1978) Microvascular Res. 15, 57–68.CrossRefGoogle Scholar
  49. Steck, T. L. (1974) J. Cell Biol. 62, 1–19.CrossRefGoogle Scholar
  50. Struik, D. J. (1950) Lectures on Classical Differential Geometry. Addison-Wesley, Cambridge, Mass.MATHGoogle Scholar
  51. Tsang, W. C. 0. (1975) The size and shape of human red blood cells. M.S. Thesis. University of California, San Diego, Calif.Google Scholar
  52. Waugh, R. E. (1977) Temperature dependence of the elastic properties of red blood cell membrane. Ph.D. Thesis. Duke University, Durham, N.C.Google Scholar
  53. Waugh, R., and Evans, E. A. (1979) Biophys. J. 26, 115–132.Google Scholar
  54. Zarda, P. R., Chien, S., and Skalak, R. (1977) J. Biomechanics 10, 211–221.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.University of California, San DiegoLa JollaUSA

Personalised recommendations