Skip to main content

Part of the book series: Unsolved Problems in Intuitive Mathematics ((1605,volume 1))

Abstract

We will denote by d(n) the number of positive divisors of n, by σ(n) the sum of those divisors, and by σ k (n) the sum of their kth powers, so that σ 0(n) = d(n) and σ 1(n) = σ(n). We use s(n) for the sum of the aliquot parts of n, i.e., the positive divisors of n other than n itself, so that s(n) = σ(n) − n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • M. Buxton and S. Elmore, An extension of lower bounds for odd perfect numbers, Notices Amer. Math. Soc. 23 (1976) A-55.

    Google Scholar 

  • E. Z. Chein, PhD thesis, Pennsylvania State Univ. 1979.

    Google Scholar 

  • E. Z. Chein, An odd perfect number has at least 8 prime factors, Abstract 79T-A 102, Notices Amer. Math. Soc. 26 (1979) A-365.

    Google Scholar 

  • G. L. Cohen, On odd perfect numbers, Fibonacci Quart. 16 (1978) 523–527; MR 80g:10010; Zbl. 391. 10008.

    Google Scholar 

  • Graeme L. Cohen, On odd perfect numbers (II), Multiperfect numbers and quasiperfect numbers, J. Austral. Math. Soc. Ser. A 29 (1980) 369–384.

    MATH  Google Scholar 

  • G. L. Cohen and M. D. Hendy, Polygonal supports for sequences of primes, Math. Chronicle 9 (1980) 120–136.

    MathSciNet  MATH  Google Scholar 

  • J. T. Condict, On an odd perfect number’s largest prime divisor, senior thesis, Middlebury College, May, 1978.

    Google Scholar 

  • G. G. Dandapat, J. L. Hunsucker, and Carl Pomerance, Some new results on odd perfect numbers, Pacific J. Math. 57 (1975) 359–364.

    Article  MathSciNet  MATH  Google Scholar 

  • John A. Ewell, On the multiplicativestructure of odd perfect numbers, J. Number Theory 12 (1980) 339–342.

    Google Scholar 

  • O. Grün, Über ungerade vollkommene Zahlen, Math. Zeit. 55 (1952) 353–354.

    Article  MATH  Google Scholar 

  • Peter Hagis, A lower bound for the set of odd perfect numbers, Math. Comput. 27 (1973) 951–953.

    Article  MATH  Google Scholar 

  • P. Hagis, Every odd perfect number has at least 8 prime factors, Notices Amer. Math. Soc. 22 (1975) A-60.

    Google Scholar 

  • Peter Hagis, Outline of a proof that every odd perfect number has at least eight prime factors, Math. Comput. 34 (1980) 1027–1032.

    Google Scholar 

  • Peter Hagis, On the second largest prime factor of an odd perfect number. Proc. Grosswald Conf., Lecture Notes in Mathematics,Spring-Verlag, New York, (to be published).

    Google Scholar 

  • Peter Hagis and Wayne McDaniel, On the largest prime divisor of an odd perfect number, Math. Comput. 27 (1973) 955–957; MR 48 3855; Il, ibid. 29 (1975) 922–924.

    MathSciNet  MATH  Google Scholar 

  • H.-J. Kanold, Untersuchungen über ungerade vollkommene Zahlen J. reine angew. Math. 183 (1941) 98–109; MR 3 268.

    Google Scholar 

  • P. J. McCarthy, Odd perfect numbers, Scripta Math. 23 (1957) 43–47.

    MathSciNet  Google Scholar 

  • Wayne McDaniel, On odd multiply perfect numbers, Boll. Un. Mat. Ital. (4) 3 (1970) 185–190; MR 41 6764.

    Google Scholar 

  • Wayne L. McDaniel and Peter Hagis, Some results concerning the non-existence of odd perfect numbers of the form p“M 213, Fibonacci Quart. 13 (1975) 25–28.

    MathSciNet  MATH  Google Scholar 

  • Joseph B. Muskat, On divisors of odd perfect numbers, Math. Comput. 20 (1966) 141–144; MR 32 4076.

    Google Scholar 

  • Karl K. Norton, Remarks on the number of factors of an odd perfect number, Acta Arith. 6 (1961) 365–374 (and see 36 (1980) 163); MR 26 4950.

    Google Scholar 

  • M. Perisastri, A note on odd perfect numbers, Math. Student 26 (1958) 179–181. C. Pomerance, Odd perfect numbers are divisible by at least seven distinct primes.

    Google Scholar 

  • Acta Arith.25 (1974) 265–300; see also Notices Amer. Math. Soc. 19 (1972) A-622–623.

    Google Scholar 

  • C. Pomerance, The second largest factor of an odd perfect number, Math. Comput. 29 (1975) 914–921.

    Article  MathSciNet  Google Scholar 

  • Carl Pomerance, Multiply perfect numbers, Mersenne primes and effective computability, Math. Ann. 226 (1977) 195–206.

    Article  MathSciNet  MATH  Google Scholar 

  • N. Robbins, The non-existence of odd perfect numbers with less than seven distinct prime factors, PhD dissertation, Polytech. Inst. Brooklyn, June 1972. Hans Salié, Über abundante Zahlen, Math. Nachr. 9 (1953) 217–220.

    Google Scholar 

  • C. Servais, Sur les nombres parfaits, Mathesis 8 (1888) 92–93.

    Google Scholar 

  • Daniel Shanks, Solved and Unsolved Problems in Number Theory,2nd ed. Chelsea, New York 1978, esp. p. 217.

    Google Scholar 

  • Bryant Tuckerman, A search procedure and lower bound for odd perfect numbers, Math. Comput. 27 (1973) 943–949.

    Article  MATH  Google Scholar 

  • H. Abbott, C. E. Aull, Ezra Brown, and D. Suryanarayana, Quasiperfect numbers, Acta Arith. 22 (1973) 439–447; MR 47 4915. Corrections, ibid. 29 (1976) 427–428.

    MathSciNet  MATH  Google Scholar 

  • M. M. Artuhov, On the problem of odd h-fold perfect numbers, Acta Arith. 23 (1973) 249–255.

    MathSciNet  MATH  Google Scholar 

  • P. T. Bateman, P. Erdös, C. Pomerance, and E. G. Straus, in Proc. Grosswald Conf., Springer-Verlag, New York, 1980.

    Google Scholar 

  • S. J. Benkoski, Problem E. 2308, Amer. Math. Monthly 79 (1972) 774.

    Article  MathSciNet  Google Scholar 

  • S. J. Benkoski and P. Erdös, On weird and pseudoperfect numbers, Math. Comput.28 (1974) 617–623; MR 50 228 (Corrigendum, S. Kravitz, ibid. 29 (1975) 673 ).

    Google Scholar 

  • Alan L. Brown, Multiperfect numbers, Scripta Math. 20 (1954) 103–106; MR 16, 12.

    Google Scholar 

  • Paolo Catteneo, Sui numeri quasiperfetti, Boll. Un. Mat. Ital. (3) 6 (1951) 59–62; Zbl. 42, 268.

    Google Scholar 

  • Graeme L. Cohen, The non-existence of quasiperfect numbers of certain forms (to appear).

    Google Scholar 

  • G. L. Cohen and M. D. Hendy, On odd multiperfect numbers, Math. Chronicle 9 (1980). J. T. Cross, A note on almost perfect numbers, Math. Mag. 47 (1974) 230–231.

    Article  MathSciNet  Google Scholar 

  • P. Erdös, Problems in number theory and combinatorics, Congressus Numerantium XVIII, Proc. 6th Conf. Numerical Math. Manitoba,1976, 35–58 (esp. pp. 53–54);

    Google Scholar 

  • Benito Franqui and Mariano Garcia, Some new multiply perfect numbers, Amer. Math. Monthly, 60 (1953) 459–462.

    Article  MathSciNet  MATH  Google Scholar 

  • Benito Franqui and Mariano Garcia, 57 new multiply perfect numbers, Scripta Math. 29 (1954) 169–171 (1955).

    MathSciNet  Google Scholar 

  • Mariano Garcia, A generalization of multiply perfect numbers, Scripta Math. 19 (1953) 209–210.

    MathSciNet  Google Scholar 

  • Mariano Garcia, On numbers with integral harmonic mean, Amer. Math. Monthly, 61 (1954) 89–96.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Hagis and G. L. Cohen, Some results concerning quasiperfect numbers, J. Austral. Math. Soc.,(to appear).

    Google Scholar 

  • B. Hornfeck and E. Wirsing, Über die Häufigkeit vollkommener Zahlen, Math. Ann. 133 (1957) 431–438; MR 19, 837. See also ibid. 137 (1959) 316–318; MR 21 3389.

    Google Scholar 

  • R. P. Jerrard and Nicholas Temperley, Almost perfect numbers, Math. Mag. 46 (1973) 84–87.

    Article  MathSciNet  MATH  Google Scholar 

  • H.-J. Kanold, Über das harmonische Mittel der Teiler einer natürlichen Zahl, Math. Ann. 133 (1957) 371–374.

    Article  MathSciNet  Google Scholar 

  • David G. Kendall, The scale of perfection, J. Appl. Probability 19A (P.A.P. Moran birthday volume, 1982.) (to appear)

    Google Scholar 

  • Masao Kishore, Odd almost perfect numbers, Notices Amer. Math. Soc. 22 (1975) A-380.

    Google Scholar 

  • Masao Kishore, Quasiperfect numbers are divisible by at least six distinct prime factors, Notices Amer. Math. Soc. 22 (1975) A-441.

    Google Scholar 

  • Masao Kishore, Odd integers N with 5 distinct prime factors for which 2–10 ’ 2 a(N)/N 2 + l0–12, Math. Comput. 32 (1978) 303–309.

    MATH  Google Scholar 

  • M. S. Klamkin, Problem E.1445*, Amer. Math. Monthly 67 (1960) 1028. See also ibid. 82 (1975) 73.

    Google Scholar 

  • Sydney Kravitz, A search for large weird numbers, J. Recreational Math. 9 (1976–77) 82–85.

    Google Scholar 

  • A. kowski, Remarques sur les fonctions 0(n), ¢(n) et a(n), Mathesis 69 (1960) 302–303.

    MathSciNet  Google Scholar 

  • A. M4kowski, Some equations involving the sum of divisors, Elem. Math. 34 (1979) 82; MR 81b: 10004.

    Google Scholar 

  • D. Minai, Structural issues for hyperperfect numbers, Fibonacci Quart.,(to appear).

    Google Scholar 

  • D. Minoli, Issues in non-linear hyperperfect numbers, Math. Comput. 34 (1980) 639645.

    Google Scholar 

  • Daniel Minoli and Robert Bear, Hyperperfect numbers, Pi Mu Epsilon J.6 (197475)153–157.

    Google Scholar 

  • Oystein Ore, On the averages of the divisors of a number, Amer. Math. Monthly 55 (1948) 615–619.

    Article  MathSciNet  Google Scholar 

  • Seppo Pajunen, On primitive weird numbers, A collection of manuscripts related to the Fibonacci sequence,18th anniv. vol., Fibonacci Assoc., 162–166.

    Google Scholar 

  • Carl Pomerance, On a problem of Ore: harmonic numbers (unpublished typescript). Carl Pomerance, On multiply perfect numbers with a special property, Pacific J. Math. 57 (1975) 511–517.

    Article  MathSciNet  MATH  Google Scholar 

  • Carl Pomerance, On the congruences u(n) = a (mod n) and n = a (mod 0(n)), Acta Arith. 26 (1975) 265–272.

    MATH  Google Scholar 

  • Paul Poulet, La Chasse aux Nombres, Fascicule I, Bruxelles, 1929, 9–27.

    MATH  Google Scholar 

  • Problem B-6, William Lowell Putnam Mathematical Competition, 1976: 12: 04.

    Google Scholar 

  • Herman J. J. te Riele, Hyperperfect numbers with three different prime factors, Math. Comput. 36 (1981) 297–298.

    Article  MATH  Google Scholar 

  • Neville Robbins, A class of solutions of the equation a(n) = 2n + t, Fibonacci Quart. 18 (1980) 137–147 (misprints in solutions for t = 31, 84, 86).

    Google Scholar 

  • H. N. Shapiro, Note on a theorem of Dickson, Bull. Amer. Math. Soc. 55 (1949) 450–52.

    Article  MathSciNet  MATH  Google Scholar 

  • H. N. Shapiro, On primitive abundant numbers, Comm. Pure Appl. Math. 21 (1968) 111–118.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Sierpipski, Sur les nombres pseudoparfaits, Mat. Vesnik 2 (17) (1965) 212–213; MR 33 7296.

    Google Scholar 

  • W. Sierpipski, Number Theory (in Polish), 1959, p. 257.

    Google Scholar 

  • D. Suryanarayana, Quasi-perfect numbers II Bull. Calcutta Math. Soc. 69 (1977) 421–426; MR 80m:10003.

    Google Scholar 

  • Andreas and Eleni Zachariou, Perfect, semi-perfect and Ore numbers, Bull. Soc. Math. Grèce (N.S.) 13 (1972) 12–22; MR 50 1 2905.

    Google Scholar 

  • H. A. M. Frey, Über unitär perfekte Zahlen, Elem. Math. 33 (1978) 95–96; MR 81a: 10007.

    Google Scholar 

  • M. V. Subbarao, Are there an infinity of unitary perfect numbers?, Amer. Math. Monthly 77 (1970) 389–390.

    Article  MathSciNet  Google Scholar 

  • M. V. Subbarao and D. Suryanarayana, Sums of the divisor and unitary divisor functions, J. reine angew. Math. 302 (1978) 1-15; MR 80d: 10069.

    Google Scholar 

  • M. V. Subbarao and L. J. Warren, Unitary perfect numbers, Canad. Math. Bull. 9 (1966) 147–153; MR 33 3994.

    Google Scholar 

  • M. V. Subbarao, T. J. Cook, R. S. Newberry, and J. M. Weber, On unitary perfect numbers, Delta 3 1 (Spring 1972 ) 22–26.

    Google Scholar 

  • Charles R. Wall, The fifth unitary perfect number, Canad. Math. Bull. 18 (1975)115–122. See also Notices Amer. Math. Soc. 16 (1969) 825.

    Google Scholar 

  • J. Alanen, O. Ore, and J. G. Stemple, Systematic computations on amicable numbers, Math. Comput. 21 (1967) 242–245; MR 36 5058.

    Google Scholar 

  • M. M. Artuhov, On some problems in the theory of amicable numbers (Russian), Acta Arith. 27 (1975) 281–291.

    MathSciNet  Google Scholar 

  • W. Borho, On Thabit ibn Kurrah’s formula for amicable numbers, Math. Comput. 26 (1972) 571–578.

    MathSciNet  MATH  Google Scholar 

  • W. Borho, Befreundete Zahlen mit gegebener Primteileranzahl, Math. Ann. 209 (1974) 183–193.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Borho, Eine Schranke für befreundete Zahlen mit gegebener Teileranzahl, Math. Nachr. 63 (1974) 297–301.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Borho, Some large primes and amicable numbers, Math. Comput. 36 (1981) 303–304. P. Bratley and J. McKay, More amicable numbers, Math. Comput. 22 (1968) 677–678; MR 37 I299.

    Google Scholar 

  • P. Bratley, F. Lunnon, and J. McKay, Amicable numbers and their distribution, Math. Comput. 24 (1970) 431–432.

    Article  MathSciNet  MATH  Google Scholar 

  • B. H. Brown, A new pair of amicable numbers, Amer. Math. Monthly, 46 (1939) 345.

    Article  MATH  Google Scholar 

  • Patrick Costello, Four new amicable pairs, Notices Amer. Math. Soc. 21 (1974) A-483.

    Google Scholar 

  • Patrick Costello, Amicable pairs of Euler’s first form, Notices Amer. Math. Soc. 22 1975) A-440.

    Google Scholar 

  • P. Erdös, On amicable numbers, Publ. Math. Debrecen 4 (1955) 108–111; MR 16, 998.

    Google Scholar 

  • P. Erdös and G. J. Rieger, Ein Nachtrag über befreundete Zahlen, J. reine angew. Math. 273 (1975) 220.

    MathSciNet  MATH  Google Scholar 

  • E. B. Escott, Amicable numbers, Scripta Math. 12 (1946) 61–72; MR 8, 135.

    Google Scholar 

  • M. Garcia, New amicable pairs, Scripta Math. 23 (1957) 167–171; MR 20 5158.

    Google Scholar 

  • A. A. Gioia and A. M. Vaidya, Amicable numbers with opposite parity, Amer. Math.

    Google Scholar 

  • Monthly 74 (1967) 969–973; correction 75 (1968) 386; MR 36 3711, 37 1306.

    Google Scholar 

  • P. Hagis, On relatively prime odd amicable numbers, Math. Comput. 23 (1969) 539–543; MR 40 85.

    Google Scholar 

  • P. Hagis, Lower bounds for relatively prime amicable numbers of opposite parity, ibid. 24 (1970) 963–968.

    MathSciNet  MATH  Google Scholar 

  • P. Hagis, Relatively prime amicable numbers of opposite parity, Math. Mag. 43 (1970) 14–20.

    Article  MathSciNet  MATH  Google Scholar 

  • H.-J. Kanold, Über die Dichten der Mengen der vollkommenen und der befreundeten Zahlen, Math. Z. 61 (1954) 180–185; MR 16, 337.

    Google Scholar 

  • H.-J. Kanold, Über befreundete Zahlen I, Math. Nachr. 9 (1953) 243–248; II, ibid. 10 (1953) 99–111; MR 15, 506.

    Google Scholar 

  • H.-J. Kanold, Über befreundete Zahlen III, J. reine angew. Math. 234 (1969) 207–215; MR 39 122.

    Google Scholar 

  • E. J. Lee, Amicable numbers and the bilinear diophantine equation, Math. Comput. 22 (1968) 181–187; MR 37 142.

    Google Scholar 

  • E. J. Lee, On divisibility by nine of the sums of even amicable pairs, Math. Comput. 23 (1969) 545–548; MR 40 1328.

    Google Scholar 

  • E. J. Lee and J. S. Madachy, The history and discovery of amicable numbers, part 1, J. Recreational Math. 5 (1972) 77–93; part 2, ibid. 153–173; part 3, ibid. 231–249.

    Google Scholar 

  • O. Ore, Number Theory and its History, McGraw-Hill, New York, 1948, p. 89. Carl Pomerance, On the distribution of amicable numbers, J. reine angew. Math. 293/294 (1977) 217–222; II ibid. (1981).

    Google Scholar 

  • P. Poulet, 43 new couples of amicable numbers, Scripta Math. 14 (1948) 77.

    MATH  Google Scholar 

  • H. J. J. te Ride, Four large amicable pairs, Math. Comput. 28 (1974) 309–312.

    Google Scholar 

  • Walter E. Beck and Rudolph M. Najar, More reduced amicable pairs, Fibonacci Quart. 15 (1977) 331–332; Zbl. 389. 10004.

    Google Scholar 

  • Walter E. Beck and Rudolph M. Najar, Fixed points of certain arithmetic functions, Fibonacci Quart. 15 (1977) 337–342; Zbl. 389. 10005.

    Google Scholar 

  • Peter Hagis and Graham Lord, Quasi-amicable numbers, Math. Comput. 31 (1977) 608–611; MR 55 7902; Zbl. 355. 10010.

    Google Scholar 

  • M. Lal and A. Forbes, A note on Chowla’s function, Math. Comput. 25 (1971) 923–925; MR 45 6737; Zbl. 245. 10004.

    Google Scholar 

  • H. W. Lenstra has proved that it is possible to construct arbitrarily long monotonic increasing aliquot sequences.

    Google Scholar 

  • Jack Alanen, Empirical study of aliquot series, Math. Rep. 133, Stichting Math. Centrum, Amsterdam, 1972; reviewed Math. Comput. 28 (1974) 878–880.

    Google Scholar 

  • E. Catalan, Bull. Soc. Math. France 16 (1887–88) 128–129.

    Google Scholar 

  • John S. Devitt, Aliquot Sequences, MSc thesis, The Univ. of Calgary, 1976; see Math. Comput. 32 (1978) 942–943.

    Google Scholar 

  • J. S. Devitt, R. K. Guy, and J. L. Selfridge, Third report on aliquot sequences, Congressus Numeratium XVIII Proc. 6th Manitoba Conf. Numerical Math. 1976, 177–204; MR 80d:10001.

    Google Scholar 

  • L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Quart. J. Math. 44 (1913) 264–296.

    MATH  Google Scholar 

  • Paul Erdös, On asymptotic properties of aliquot sequences, Math. Comput. 30 (1976) 641–645.

    MATH  Google Scholar 

  • Richard K. Guy, Aliquot sequences, in Number Theory and Algebra, Academic Press, 1977, 111–118; MR 57 223; Zbl. 367. 10007.

    Google Scholar 

  • Richard K. Guy and J. L. Selfridge, Interim report on aliquot series, Congressus Numerantium V, Proc. Conf. Numerical Math. Winnipeg, 1971, 557–580; MR 49 194; Zbl. 266. 10006.

    Google Scholar 

  • Richard K. Guy and J. L. Selfridge, Combined report on aliquot sequences, The Univ. of Calgary Math. Res. Report No. 225, May, 1974.

    Google Scholar 

  • Richard K. Guy and J. L. Selfridge, What drives an aliquot sequence? Math. Comput. 29 (1975) 101–107; MR 52 5542; Zbl. 296.10007. Corrigendum, ibid. 34 (1980).

    Google Scholar 

  • Richard K. Guy and M. R. Williams, Aliquot sequences near 1012, Congressus Numerantium XII, Proc. 4th Conf. Numerical Math. Winnipeg, 1974, 387–406; MR 52 242; Zbl. 359. 10007.

    Google Scholar 

  • Richard K. Guy, D. H. Lehmer, J. L. Selfridge, and M. C. Wunderlich, Second report on aliquot sequences, Congressus Numerantium IX, Proc. 3rd Conf. Numerical Math. Winnipeg, 1973, 357–368; MR 50 4455; Zbl. 325. 10007.

    Google Scholar 

  • G. Aaron Paxson, Aliquot sequences (preliminary report), Amer. Math. Monthly, 63 (1956) 614. See also Math. Comput. 26 (1972) 807–809.

    Google Scholar 

  • P. Poulet, La chasse aux nombres, Fascicule I, Bruxelles, 1929.

    MATH  Google Scholar 

  • H. J. J. te Riele, A note on the Catalan—Dickson conjecture, Math. Comput. 27 (1973) 189–192; MR 48 3869; Zbl. 255. 10008.

    Google Scholar 

  • W. Borho, Über die Fixpunkte der k-fach iterierten Teilersummenfunktion, Mitt. Math. Gesellsch. Hamburg 4 (1969) 35–38; MR 40 ¢7189.

    Google Scholar 

  • H. Cohen, On amicable and sociable numbers, Math. Comput. 24 (1970) 423–429; MR 42 5887. ichard David, letter to D. H. Lehmer, 1972: 02: 25.

    Google Scholar 

  • P. Poulet, Question 4865, L’Intermédiaire des math. 25 (1918) 100–101.

    Google Scholar 

  • S. C. Root, in M. Beeler, R. W. Gosper and R. Schroeppel, M.I.T. Artificial Intelligence Memo 239, 1972: 02: 29.

    Google Scholar 

  • Paul Erdös, A mélange of simply posed conjectures with frustratingly elusive solutions, Math. Mag. 52 (1979) 67–70.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Erdös, Problems and results in number theory and graph theory, Congressus Numerantium XXVII, Proc. 9th Manitoba Conf. Numerical Math. Comput. 1979, 3–21.

    Google Scholar 

  • Richard K. Guy and Marvin C. Wunderlich, Computing unitary aliquot sequences—a preliminary report, Congressus Numerantium XXVII, Proc. 9th Manitoba Conf. Numerical Math. Comput. 1979, 257–270.

    Google Scholar 

  • P. Hagis, Unitary amicable numbers, Math. Comput. 25 (1971) 915–918; MR 45 8599; Zbl. 232. 10004.

    Google Scholar 

  • Peter Hagis, Unitary hyperperfect numbers, Math. Comput. 36 (1981) 299–301. M. Lal, G. Tiller and T. Summers, Unitary sociable numbers, Congressus Numerantium VII, Proc. 2nd Conf. Numerical Math. Winnipeg, 1972, 211–216; R 50114471; Zbl. 309. 10005.

    Google Scholar 

  • H. J. J. te Riele, Unitary Aliquot Sequences, MR 139/72, Mathematisch Centrum, msterdam, 1972; reviewed Math. Comput. 32 (1978) 944–945; Zbl. 251. 10008.

    Google Scholar 

  • H. J. J. te Riele, Further Results on Unitary Aliquot Sequences, NW2/73, Mathematisch Centrum, Amsterdam, 1973; reviewed Math. Comput. 32 (1978) 945.

    Google Scholar 

  • H. J. J. te Riele, A Theoretical and Computational Study of Generalized Aliquot Sequences, MCT74, Mathematisch Centrum, Amsterdam, 1976; reviewed Math. Comput. 32 (1978) 945–946; MR 58 27716.

    Google Scholar 

  • C. R. Wall, Topics related to the sum of unitary divisors of an integer, PhD thesis, Univ. of Tennessee, 1970.

    Google Scholar 

  • Dieter Bode, Über eine Verallgemeinerung der Vollkommenen Zahlen, Dissertation, Braunschweig, 1971.

    Google Scholar 

  • P. Erdös, Some remarks on the iterates of the 4 and a functions, Colloq. Math. 17 (1967) 195 —202.

    Google Scholar 

  • J. L. Hunsucker and C. Pomerance, There are no odd superperfect numbers less than 7 x 10’, Indian J. Math. 17 (1975) 107–120.

    MathSciNet  MATH  Google Scholar 

  • H.-J. Kanold, Über “Super perfect numbers,” Elern. Math. 24 (1969) 61–62; MR 39 5463.

    Google Scholar 

  • Graham Lord, Even perfect and superperfect numbers, Elem. Math. 30 (1975) 87–88. A. Makowski and A Schinzel, On the functions i(n) and o(n), Colloq. Math. 13 (196465) 95–99.

    Google Scholar 

  • A. Schinzel, Ungelöste Probleme Nr. 30, Elem. Math. 14 (1959) 60–61.

    MathSciNet  Google Scholar 

  • D. Suryanarayana, Super perfect numbers, Elem. Math. 24 (1969) 16–17; MR 39 5706. D. Suryanarayana, There is no odd superperfect number of the form p 2 a, Elem. Math. 28 (1973) 148–150.

    MathSciNet  MATH  Google Scholar 

  • P. Erdös, Über die Zahlen der Form 6(n) — n und n — On), Elem. Math. 28 (1973) 83–86.

    MATH  Google Scholar 

  • Paul Erdös, Some unconventional problems in number theory, Astérisque 61 (1979) 73–82; Zbl. 399.10001; MR 81h: 10001.

    Google Scholar 

  • Richard K. Guy and Daniel Shanks, A constructed solution of v(n) = on + 1), Fibonacci Quart. 12 (1974) 299; MR 50 219; Zbl. 287. 10004.

    Google Scholar 

  • John L. Hunsucker, Jack Nebb, and Robert E. Stearns, Computational results concerning some equations involving Q(n), Math. Student 41 (1973) 285–289.

    MathSciNet  Google Scholar 

  • A. Makowski, On some equations involving functions qp(n) and v(n), Amer. Math. Monthly 67 (1960) 668–70 correction, ibid. 68 (1971) 650.

    Google Scholar 

  • W.E. Mientka and R. L. Vogt, Computational results relating to problems concerning 0(n), Mat. Vesnik 7 (1970) 35–36.

    MathSciNet  Google Scholar 

  • P. Erdös and M. Kac, Problem 4518, Amer. Math. Monthly 60 (1953) 47. Solution, R. Breusch, 61 (1954) 264–265.

    Google Scholar 

  • M. Sugunamma, PhD thesis, Sri Venkataswara Univ. 1969. P. Erdös, Problems and results on consecutive integers, Eureka 38 (1975–76) 3–8.

    Google Scholar 

  • P. Erdös and G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Litt. Sci. Szeged 7 (1934) 95–102; Zbl. 10, 294.

    Google Scholar 

  • S. W. Golomb, Powerful numbers, Amer. Math. Monthly 77 (1970) 848–852; MR 42 1780.

    Google Scholar 

  • Andrzej Makowski, On a problem of Golomb on powerful numbers, Amer. Math. Monthly 79 (1972) 761.

    Article  MathSciNet  MATH  Google Scholar 

  • W. A. Sentance, Occurences of consecutive odd powerful numbers, Amer. Math. Monthly 88 (1981) 272–274.

    Article  MathSciNet  MATH  Google Scholar 

  • E. G. Straus and M. V. Subbarao, On exponential divisors, Duke Math. J. 41 (1974) 465–471; MR 50 2053.

    Google Scholar 

  • M. V. Subbarao, On some arithmetic convolutions, in The Theory of Arithmetic Functions, Springer-Verlag, New York, 1972.

    Google Scholar 

  • M. V. Subbarao and D. Suryanarayana, Exponentially perfect and unitary perfect numbers, Notices Amer. Math. Soc. 18 (1971) 798.

    Google Scholar 

  • P. Erdös and L. Mirsky, The distribution of values of the divisor function d(n), Proc. London Math. Soc. (3) 2 (1952) 257–271.

    MATH  Google Scholar 

  • M. Nair and P. Shiu, On some results of Erdös and Mirsky, J. London Math. Soc. (2) 22 (1980) 197–203; and see ibid. 17 (1978) 228–230.

    Google Scholar 

  • A. Schinzel, Sur un problème concernant le nombre de diviseurs d’un nombre naturel, Bull. Acad. Polon. Sci. Ser. sci. math. astr. phys. 6 (1958) 165–167.

    MathSciNet  MATH  Google Scholar 

  • A. Schinzel and W. Sierpinski, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958) 185–208.

    MathSciNet  MATH  Google Scholar 

  • W. Sierpinski, Sur une question concernant le nombre de diviseurs premiers d’un nombre naturel, Colloq. Math. 6 (1958) 209–210.

    MathSciNet  MATH  Google Scholar 

  • A. Makowski, On a problem of Erdös, Enseignement Math. (2) 14 (1968) 193.

    MathSciNet  MATH  Google Scholar 

  • Robert Baillie, G. V. Cormack, and H. C. Williams, Some results concerning a problem of Sierpinski, Math. Comput.,(to appear).

    Google Scholar 

  • G. V. Cormack and H. C. Williams, Some very large primes of the form k 2“ + 1, Math. Comput. 35 (1980) 1419–1421; MR 81i: 10011.

    Google Scholar 

  • P. Erdös and A. M. Odlyzko, On the density of odd integers of the form (p - 1)2-“ and related questions, J. Number Theory 11 (1979) 257–263.

    Article  MathSciNet  MATH  Google Scholar 

  • J. L. Selfridge, Solution to problem 4995, Amer. Math. Monthly 70 (1963) 101.

    Article  MathSciNet  Google Scholar 

  • W. Sierpinski, Sur un problème concernant les nombres k 2“ + 1, Elem. Math. 15 (1960) 73–74;

    MathSciNet  MATH  Google Scholar 

  • W. Sierpinski, 250 Problems in Elementary Number Theory, Elsevier, New York, 1970, 10, 64.

    Google Scholar 

  • K. Alladi and C. Grinstead, On the decomposition of n! into prime powers, J. Number Theory 9 (1977) 452–458.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Erdös, Some problems in number theory, Computers in Number Theory, Academic Press, London and New York, 1971, 405–414.

    Google Scholar 

  • E. Ecklund and R. EggletonPrime factors of consecutive integers Amer. Math. Monthly 79 (1972) 1082–1089.

    Google Scholar 

  • E. Ecklund, R. Eggleton, P. Erdös and J. L. Selfridge, On the prime factorization of binomial coefficients, J. Austral Math. Soc. Ser. A, 26 (1978) 257–269; MR 80e: 10009.

    Google Scholar 

  • P. Erdös, Problems and results on number theoretic properties of consecutive integers and related questions. Congressus Numerantium XVI Proc. 5th Manitoba Conf. Numer. Math. 1975, 25–44.

    Google Scholar 

  • P. Erdös and R. L. GrahamOn products of factorials Bull. Inst. Math. Acad. Sinica Taiwan 4 (1976) 337–355.

    Google Scholar 

  • Kenneth Lebensold, A divisibility problem, Studies in Applied Math. 56 (1976–77) 291–294. MR 58 2 1639.

    Google Scholar 

  • P. T. Bateman and R. M. Stemmler, Waring’s problem for algebraic number fields and primes of the form (p’ — 1)/(p 1 — 1), Illinois T. Math. 6 (1962) 142–156.

    Google Scholar 

  • Ted Chinburg and Melvin Henriksen, Sums of kth powers in the ring of polynomials with integer coefficients, Bull. Amer. Math. Soc. 81 (1975) 107–110.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Makowski and A. Schinzel, Sur l’équation indéterminée de R. Goormaghtigh, Mathesis 68 (1959) 128–142 and 70 (1965) 94–96.

    MATH  Google Scholar 

  • N. M. Stephens, On the Feit-Thompson conjecture, Math. Comput. 25 (1971) 625.

    Article  MathSciNet  MATH  Google Scholar 

  • S. L. G. ChoiOn sequences containing at most three pairwise coprime integers Trans. Amer. Math. Soc. 183 (1973) 437–440; MR 48 6052.

    Google Scholar 

  • P. ErdösExtremal problems in number theory Proc. Sympos. Pure Math. Amer. Math. Soc. 8 (1965) 181–189; MR 30 4740.

    Google Scholar 

  • P. Erdös and J. L. SelfridgeSome problems on the prime factors of consecutive integers Illinois J. Math. 11 (1967) 428–430.

    Google Scholar 

  • A. SchinzelUnsolved problem 31 Elem. Math. 14 (1959) 82–83.

    Google Scholar 

  • Alfred Brauer, On a property of k consecutive integers Bull. Amer. Math. Soc. 47 (1941) 328–331; MR 2, 248.

    Google Scholar 

  • Ronald J. EvansOn blocks of N consecutive integers Amer. Math. Monthly 76 (1969) 48–49.

    Google Scholar 

  • Ronald EvansOn N consecutive integers in an arithmetic progression Acta Sei. Math. Univ. Szeged 33 (1972) 295–296.

    Google Scholar 

  • Heiko Harborth, Eine Eigenschaft aufeinanderfolgender Zahlen, Arch. Math. (Basel) 21 (1970) 50–51.

    Google Scholar 

  • Heiko Harborth, Sequenzen ganzer Zahlen, in Zahlentheorie, Berichte aus dem Math. Forschungsinst. Oberwolfach 5 (1971) 59–66.

    Google Scholar 

  • S. S. Pillai, On m consecutive integers I, Proc. Indian Acad. Sci. Sect A, 11 (1940) 6–12; MR1,199; II ibid. 11 (1940) 73–80; MR 1,291; III ibid. 13 (1941) 530–533; MR 3, 66; IV Bull. Calcutta Math. Soc. 36 (1944) 99–101; MR 6, 170.

    Google Scholar 

  • D. H. LehmerOn a problem of Stormer Illinois J. Math. 8 (1964) 57–79;

    Google Scholar 

  • P. Erdös and G. Szekeres, Some number theoretic problems on binomial coefficients, Austral. Math. Soc. Gaz. 5 (1978) 97–99; MR 80e: 10010.

    Google Scholar 

  • P. Erdös, Problems and results in combinatorial analysis and combinatorial number theory, Congressus Numerantium XXI in Proc. 9th S.E. Conf. Combin. Graph Theory, Comput., Boca Raton, Utilitas Math. Winnipeg, 1978, 29–40.

    Google Scholar 

  • P. Erdös and C. Pomerance, Matching the natural numbers up to n with distinct multiples in another interval, Nederl. Akad. Wetensch. Proc. Ser. A 83 (=Indag. Math. 42) (1980) 147–161.

    Google Scholar 

  • Paul Erdös and Carl Pomerance, An analogue of Grimm’s problem of finding distinct prime factors of consecutive integers, Utilitas Math. 19 (1981), (to appear).

    Google Scholar 

  • P. Erdös and J. L. Selfridge, Some problems on the prime factors of consecutive integers II, in Proc. Washington State Univ. Conf. Number Theory, Pullman, 1971, 13–21.

    Google Scholar 

  • C. A. Grimm, A conjecture on consecutive composite numbers, Amer. Math. Monthly 76 (1969) 1126–1128.

    Article  MathSciNet  MATH  Google Scholar 

  • Michel Langevin, Plus grand facteur premier d’entiers en progression arithmétique, Sém. Delange-Pisot-Poitou, 18 (1976/77) Théorie des nombres, Fasc. 1, Exp. No. 3 (1977); MR 81a:10011.

    Google Scholar 

  • Carl Pomerance, Some number theoretic matching problems, in Proc. Number Theory Conf:, Queens Univ., Kingston, 1979, 237–247.

    Google Scholar 

  • K. T. Ramachandra, N. Shorey, and R. Tijdeman, On Grimm’s problem relating to factorization of a block of consecutive integers, J. reine angew. Math. 273 (1975) 109–124.

    MathSciNet  MATH  Google Scholar 

  • E. F. Ecklund, On prime divisors of the binomial coefficient, Pacific J. Math. 29 (1969) 267–270.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Erdös, A theorem of Sylvester and Schur, J. London Math. Soc. 9 (1934) 282–288. Paul Erdös, A mélange of simply posed conjectures with frustratingly elusive solutions, Math. Mag. 52 (1979) 67–70.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Erdös and R. L. Graham, On the prime factors of (z), Fibonacci Quart. 14 (1976) 348–352.

    MathSciNet  MATH  Google Scholar 

  • P. Erdös, R. L. Graham, I. Z. Ruzsa, and E. Straus, On the prime factors of („’), Math. Comput. 29 (1975) 83–92.

    MATH  Google Scholar 

  • M. Faulkner, On a theorem of Sylvester and Schur, J. London Math. Soc. 41 (1966) 107–110.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Moser, Insolvability of („„) _ (2:)(21,b), Canad. Math. Bull. 6 (1963) 167–169.

    Article  MathSciNet  MATH  Google Scholar 

  • I. Schur, Einige Sätze über Primzahlen mit Anwendungen and Irreduzibilitätsfragen I, S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl. 14 (1929)125–136.

    Google Scholar 

  • J. Sylvester, On arithmetical series, Messenger of Math. 21 (1892) 1–19, 87–120. W. Utz, A conjecture of Erdös concerning consecutive integers, Amer. Math. Monthly 68 (1961) 896–897.

    Article  MathSciNet  Google Scholar 

  • A. Schinzel, Sur un problème de P. Erdös, Colloq. Math. 5 (1957–58) 198–204.

    Google Scholar 

  • P. Erdös, How many pairs of products of consecutive integers have the same prime factors? Amer. Math. Monthly 87 (1980) 391–392.

    Article  MATH  Google Scholar 

  • P. Erdös, Über die Zahlen der Form o(n)–n and n–4(n), Elem. Math. 28 (1973) 83–86.

    MathSciNet  MATH  Google Scholar 

  • P. Erdös and R. R. Hall, Distinct values of Euler’s (/)-function, Mathematika 23 (1976) 1–3.

    Article  MathSciNet  MATH  Google Scholar 

  • Andrzej Makowski, On the equation i(n + k) = 20(n), Elem. Math. 29 (1974) 13.

    Google Scholar 

  • A. Schinzel, Sur l’équation 4(x + k) _ q5(x), Acta Arith. 4 (1958) 181–184; MR 21 5597.

    Google Scholar 

  • A. Schinzel and A. Wakulicz, Sur l’équation c (x + k) _ 0(x) II, Acta Arith. 5 (1959) 425–426; MR 23 A831.

    Google Scholar 

  • W. Sierpinski, Sur un propriété de la fonction 0(n), Publ. Math. Debrecen 4 (1956) 184–185.

    MathSciNet  Google Scholar 

  • Ronald Alter, Can 4(n) properly divide n — 1? Amer. Math. Monthly 80 (1973) 192–193. Graeme L. Cohen and Peter Hagis, On the number of prime factors of n if 4o(n)1(n — 1), Nieuw Arch. Wisk. (3) 28 (1980), 177–185.

    Google Scholar 

  • Masao Kishore, On the equation 0(M) = M — 1 Nieuw Arch. Wisk. (3) 25 (1977) 48–53. See also Notices Amer. Math. Soc. 22 (1975) A-501–502.

    Google Scholar 

  • D. H. Lehmer, On Euler’s totient function Bull. Amer. Math. Soc. 38 (1932) 745–751.

    Google Scholar 

  • E. Lieuwens, Do there exist composite numbers for which kO(M) = M — 1 holds? Nieuw Arch. Wisk. (3) 18 (1970) 165–169; MR 42 1750.

    Google Scholar 

  • C. Pomerance, On composite n for which i(n)In — 1, Acta Arith. 28 (1976) 387–389; II Pacific J. Math. 69 (1977) 177–186. See also Notices Amer. Math. Soc. 22 (1975) A-542.

    Google Scholar 

  • Fred Schuh, Can n — 1 be divisible by ¢(n) where n is composite? Mathematica Zutphen B. 12 (1944) 102–107.

    Google Scholar 

  • M. V. Subbarao, On two congruences for primality Pacific J. Math. 52 (1974) 261–268; MR 50 2049.

    Google Scholar 

  • David W. Wall, Conditions for 4o(N) to properly divide N — 1, A Collection of Manuscripts Related to the Fibonacci Sequence,18th Anniv. Vol., Fibonacci Assoc. 205–208.

    Google Scholar 

  • R. D. Carmichael, Note on Euler’s 4i-function, Bull. Amer. Math. Soc. 28 (1922) 109–110.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Erdös, on the normal number of prime factors ofp 1 and some other related problems concerning Euler’s 0-function, Quart. J. Math. Oxford Ser. 6 (1935) 205–213.

    Article  MATH  Google Scholar 

  • P. Erdös, Some remarks on Euler’s 0-function and some related problems, Bull. Amer. Math. Soc. 51 (1945) 540–544.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Erdös, Some remarks on Euler’s 0 function, Acta Arith. 4 (1958)10–19; MR 22 1539. P. Erdös and R. R. Hall. Distinct values of Euler’s 0-function, Mathematika 23 (1976) 1–3.

    Article  MathSciNet  MATH  Google Scholar 

  • C. Hooley, On the greatest prime factor of p + a, Mathematika 20 (1973) 135–143. H. Iwaniec, On the Brun-Titchmarsh theorem, (to appear)

    Google Scholar 

  • V. L. Klee, On a conjecture of Carmichael, Bull. Amer. Math. Soc. 53 (1947)1183–1186; MR 9, 269.

    Google Scholar 

  • V. L. Klee, Is there an n for which 0(x) = n has a unique solution? Amer. Math. Monthly 76 (1969) 288–289.

    Article  MathSciNet  Google Scholar 

  • Carl Pomerance, On Carmichael’s conjecture, Proc. Amer. Math. Soc. 43 (1974) 297–298.

    MathSciNet  MATH  Google Scholar 

  • Carl Pomerance, Popular values of Euler’s function, Mathematika 27 (1980) 84–89. K. R. Wooldridge, Values taken many times by Euler’s phi-function, Proc. Amer. Math. Soc. 76 (1979) 229–234; MR 80g: 10008.

    Google Scholar 

  • P. Erdös, On the integers relatively prime to n and on a number-theoretic function considered by Jacobsthal, Math. Scand. 10 (1962) 163–170; MR 26 3651.

    Google Scholar 

  • C. Hooley, On the difference of consecutive numbers prime to n, Acta Arith. 8 (1963) 343–347.

    MathSciNet  MATH  Google Scholar 

  • R. C. Vaughan, Some applications of Montgomery’s sieve, J. Number Theory 5 (1973) 64–79.

    Article  MathSciNet  MATH  Google Scholar 

  • P. A. Catlin, Concerning the iterated 0-function, Amer. Math. Monthly 77 (1970) 60–61. Paul Erdös and R. R. Hall, Euler’s 0-function and its iterates, Mathematika 24 (1977) 173–177; MR 57 1 2356.

    Google Scholar 

  • W. H. Mills, Iteration of the 0-function, Amer. Math. Monthly 50 (1953) 547–549.

    Article  Google Scholar 

  • C. A. Nicol, Some diophantine equations involving arithmetic functions, J. Math. Anal. Appl. 15 (1966) 154–161.

    Article  MathSciNet  MATH  Google Scholar 

  • Harold N. Shapiro, An arithmetic function arising from the 0-function, Amer. Math. Monthly 50 (1943) 18–30; MR 4, 188.

    Google Scholar 

  • A. Makowski and A. Schinzel, On the functions c (n) and a(n), Colloq. Math. 13 (196465) 95–99.

    Google Scholar 

  • L. Carlitz, A note on the left factorial function, Math. Balkanica 5 (1975) 37–42. Duro Kurepa, On some new left factorial propositions, Math. Balkanica 4 (1974) 383–386; MR 58 10716.

    Google Scholar 

  • E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Annals of Math. 39 (1938) 350–360; Zbl. 19, 5.

    Google Scholar 

  • Barry J. Powell, Advanced problem 6325, Amer. Math. Monthly 87 (1980) 826.

    Article  MathSciNet  Google Scholar 

  • P. Erdös and Carl Pomerance, On the largest prime factors of n and n + 1, Aeguationes Math. 17 (1978) 311–321.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guy, R.K. (1981). Divisibility. In: Unsolved Problems in Number Theory. Unsolved Problems in Intuitive Mathematics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1738-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1738-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1740-2

  • Online ISBN: 978-1-4757-1738-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics