Skip to main content

Part of the book series: Unsolved Problems in Intuitive Mathematics ((1605,volume 1))

  • 692 Accesses

Abstract

We can partition the positive integers into three classes:

  • the unit, 1

  • the primes, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,...

  • the composite numbers, 4, 6, 8, 9, 10,...

A number greater than 1 is prime if its only positive divisors are 1 and itself; otherwise it’s composite. Primes have interested mathematicians at least since Euclid, who showed that there were infinitely many.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • A. Schinzel and W. Sierpinski, Sur certains hypothèses concernant les nombres premiers, Acta Arith. 4 (1958) 185–208 (erratum 5 (1959) 259); MR 21 #4936.

    Google Scholar 

  • Leonard Adleman and Frank Thomson Leighton, An 0(n“ ° 89 ) primality testing algorithm, Math. Comput. 36 (1981) 261–266.

    MathSciNet  MATH  Google Scholar 

  • Leonard M. Adleman, Carl Pomerance and Robert S. Rumely, On distinguishing prime numbers from composite numbers (to appear)

    Google Scholar 

  • R. P. Brent, An improved Monte Carlo factorization algorithm, BIT, 20 (1980), 176–184.

    Article  MathSciNet  MATH  Google Scholar 

  • John D. Dixon, Asymptotically fast factorization of integers, Math. Comput. 36 (1981) 255–260.

    Google Scholar 

  • Richard K. Guy, How to factor a number, Congressus Numerantium XVI Proc. 5th Manitoba Conf. Numer. Math., Winnipeg, 1975, 49–89.

    Google Scholar 

  • H. W. Lenstra, Primality testing, Studieweek Getaltheorie en Computers, Stichting Mathematisch Centrum, Amsterdam, 1980, 41–60.

    Google Scholar 

  • G. L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. System Sci., 13 (1976) 300–317.

    Article  MathSciNet  MATH  Google Scholar 

  • J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos. Soc. 76 (1974) 521–528.

    Article  MathSciNet  MATH  Google Scholar 

  • J. M. Pollard, A Monte Carlo method for factorization, BIT 15 (1975) 331–334; MR 50 #6992.

    Google Scholar 

  • R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public key cryptosystems, Communications A.C.M., Feb. 1978.

    Google Scholar 

  • R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput. 6 (1977) 84–85; erratum 7 (1978) 118; MR 57 #5885.

    Google Scholar 

  • H. C. Williams, Primality testing on a computer, Ars Combin. 5 (1978) 127–185. MR 80d: 10002.

    Google Scholar 

  • H. C. Williams and R. Holte, Some observations on primality testing, Math. Comput. 32 (1978) 905–917; MR 57 # 16184.

    Google Scholar 

  • H. C. Williams and J. S. Judd, Some algorithms for prime testing using generalized Lehmer functions, Math. Comput. 30 (1976) 867–886.

    MathSciNet  MATH  Google Scholar 

  • Martin Gardner, The remarkable lore of prime numbers, Scientific Amer. 210 ## 3 (Mar. 1964) 120–128.

    Google Scholar 

  • G. H. Hardy and J. E. Littlewood, Some problems of `partitio numerorum’ III: on the expression of a number as a sum of primes, Acta Math. 44 (1922) 1–70.

    Article  MathSciNet  Google Scholar 

  • Henryk Iwaniec, Almost-primes represented by quadratic polynomials, Invent. Math. 47 (1978) 171–188; MR 58 #5553.

    Google Scholar 

  • Carl Pomerance, A note on the least prime in an arithmetic progression, J. Number Theory 12 (1980) 218–223.

    Article  MathSciNet  MATH  Google Scholar 

  • I. I. Pyateckii-Sapiro, On the distribution in sequences of the form [f(n)], Mat. Sbornik N.S. 33 (1953) 559–566; MR 15, 507.

    Google Scholar 

  • I. 0. Angell and H. J. Godwin, Some factorizations of 10“ + 1, Math. Comput. 28 (1974) 307–308.

    MathSciNet  MATH  Google Scholar 

  • Alan Borning, Some results for k! + 1 and 2 • 3 • 5 • • • p + 1, Math. Comput. 26 (1972) 567–570.

    Google Scholar 

  • Martin Gardner, Mathematical Games, Sci. Amer. 243 #6 (Dec. 1980) 18–28. Solomon W. Golomb, On Fortune’s conjecture, Math. Mag. (to appear)

    Google Scholar 

  • S. Kravitz and D. E. Penney, An extension of Trigg’s table, Math. Mag. 48 (1975)92–96.

    Google Scholar 

  • Mark Templer, On the primality of k! + I and 2 * 3 * 5 * • • • * p + 1, Math. Comput. 34 (1980) 303–304.

    Google Scholar 

  • George E. Andrews, Some formulae for the Fibonacci sequence with generalizations, Fibonacci Quart. 7 (1969) 113–130; MR 39 4088.

    Google Scholar 

  • R. C. Archibald, Scripta Math. 3 (1935) 117.

    Google Scholar 

  • Robert Baillie, New primes of the form k 2“ + 1, Math. Comput. 33 (1979)1333–1336; MR 10009.

    Google Scholar 

  • Richard P. Brent, Factorization of the eighth Fermat number, Abstracts Amer. Math. Soc. 1 (1980) 565.

    Google Scholar 

  • Richard P. Brent and J. M. Pollard, Factorization of the eighth Fermat number, Math. Comput. 36 (1981)

    Google Scholar 

  • John Brillhart, D. H. Lehmer and J. L. Selfridge, New primality criteria and factor-zations of 2’ + 1, Math. Comput. 29 (1975) 620–627; MR 52 #5546.

    Google Scholar 

  • John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and S. S. Wagstaff, Factorizations of h“ - 1 and b” + 1, b - 13, Amer. Math. Soc.,Providence, 1981, (to appear)

    Google Scholar 

  • J. Brillhart, J. Tonascia and P. Weinberger, On the Fermat quotient, in A. O. L. Atkin and B. J. Birch (eds.) Computers in Number Theory, Academic Press, London, 1971, pp. 213–222.

    Google Scholar 

  • Martin Gardner, Mathematical games: The strong law of small numbers, Sci. Amer. 243 #6 (Dec. 1980), 18–28.

    Google Scholar 

  • Donald B. Gillies, Three new Mersenne primes and a statistical theory, Math. Comput. 18 (1964) 93–97.

    Article  Google Scholar 

  • Gary B. Gostin, A factor of F„, Math. Comput. 35 (1980) 975–976.

    MATH  Google Scholar 

  • Gary B. Gostin and Philip B. McLaughlin, Five new factors of Fermat numbers, Math. Comput.,(to appear)

    Google Scholar 

  • R. L. Graham, A. Fibonacci-like sequence of composite numbers, Math. Mag. 37 (1964) 322–324.

    Article  MATH  Google Scholar 

  • John C. Hallyburton and John Brillhart, Two new factors of Fermat numbers, Math. Comput. 29 (1975) 109–112; MR 51 #5460. Corrigendum 30 (1976) 198; MR 52 #13599.

    Google Scholar 

  • M Kraitchik, Sphinx,1931, 31.

    Google Scholar 

  • D. H. Lehmer Sphinx1931, 32, 164.

    Google Scholar 

  • E. Lucas, Théorie des fonctions numériques simplements périodiques, Amer. J. Math. 1 (1878) 184–240, 289–321 (esp. p. 316)

    Google Scholar 

  • G. Matthew and H. C. Williams, Some new primes of the form k • 2“ + 1, Math. Comput. 31 (1977) 797–798; MR 55 #12605.

    Google Scholar 

  • Michael A. Morrison and John Brillhart, A method of factoring and the factorization of F7, Math. Comput. 29 (1975)183–205.

    Google Scholar 

  • Curt Noll and Laura Nickel, The 25th and 26th Mersenne primes, Math. Comput. 35 (1980) 1387–1390.

    Article  MathSciNet  MATH  Google Scholar 

  • Rudolf Ondrejka, Primes with 100 or more digits, J. Recreational Math. 2 (1969) 42–44; Addenda, 3 (1970) 161–162; More on large primes, 11 (1979) 112–113; MR 80g:10012.

    Google Scholar 

  • R. E. Powers Amer. Math. Monthly18 (1911) 195–197; Proc. London Math. Soc. (2) 13 (1919) 39.

    Google Scholar 

  • Raphael M. Robinson, A report on primes of the form k • 2“ + 1 and on factors of Fermat numbers, Proc. Amer. Math. Soc. 9 (1958) 673–681; MR 20 #3097.

    Google Scholar 

  • D. E. Shippee, Four new factors of Fermat numbers, Math. Comput. 32 (1978) 941. David Slowinski, Searching for the 27th Mersenne prime, J. Recreational Math. 11 (1978–79) 258–261; MR 80g:10013.

    Google Scholar 

  • C. L. Stewart, The greatest prime factor of An — B“, Acta Arith. 26 (1975) 427–433.

    MATH  Google Scholar 

  • C. L. Stewart, Divisor properties of arithmetical sequences, PhD. thesis, Cambridge, 1976.

    Google Scholar 

  • Bryant Tuckerman, The 24th Mersenne prime, Proc. Nat. Acad. Sci. U.S.A. 68 (1971) 2319–2320.

    Article  MathSciNet  MATH  Google Scholar 

  • D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 67 (1960) 525–532; MR 22 #10945.

    Google Scholar 

  • H. C. Williams, Some primes with interesting digit patterns Math. Comput. 32 (1978) 1306–1310; MR 58 #484; Zbl. 388.10007.

    Google Scholar 

  • H. C. Williams and E. Seah, Some primes of the form (a“ — 1)l(a — 1) Math. Comput. 33 (1979) 1337–1342; MR 80g:10014.

    Google Scholar 

  • Samuel Yates, The mystique of repunits, Math. Mag. 51 (1978) 22–28; MR 80f:10008.

    Google Scholar 

  • Carter Bays and Richard H. Hudson, The appearance of tens of billions of integers x with n24,13(x) - 724,1 (X) in the vicinity of 1012, J. reine angew. Math. 299/300 (1978) 234–237; MR 57 #12418.

    Google Scholar 

  • Carter Bays and Richard H. Hudson, Details of the first region of integers x with n3 2(x)–n3,1(x), Math. Comput. 32 (1978) 571–576.

    MathSciNet  MATH  Google Scholar 

  • Carter Bays and Richard H. Hudson, Numerical and graphical description of all axis crossing regions for the moduli 4 and 8 which occur before 1012, Internat. J. Math. Sci. 2 (1979) 111–119; MR 80h: 10003.

    Google Scholar 

  • Richard H. Hudson, A common combinatorial principle underlies Riemann’s formula, the Chebyshev phenomenon, and other subtle effects in comparative prime number theory I, J. reine angew. Math. 313 (1980) 133–150.

    MathSciNet  MATH  Google Scholar 

  • S. Knapowski and P. Turân, Über einige Fragen der vergleichenden Primzahltheorie, Number Theory and Analysis,Plenum Press, New York, 1969, 157==171.

    Google Scholar 

  • S. Knapowski and P. Turân, On prime numbers =1 resp. 3 (mod 4), Number Theory and Algebra,Academic Press, N.Y. 1977, pp. 157–165; MR 57 #5926.

    Google Scholar 

  • John Leech, Note on the distribution of prime numbers, J. London Math. Soc. 32 (1957) 56–58.

    MathSciNet  MATH  Google Scholar 

  • Daniel Shanks, Quadratic residues and the distribution of primes, Math. Tables Aids Comput. 13 (1959) 272–284.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Erdös and P. Turk), On certain sequences of integers, J. London Math. Soc. 11 (1936) 261–264.

    Article  Google Scholar 

  • J. Gerver, The sum of the reciprocals of a set of integers with no arithmetic progression of k terms, Proc. Amer. Math. Soc. 62 (1977) 211–214.

    MathSciNet  MATH  Google Scholar 

  • Joseph L. Gerver and L. Thomas Ramsey, Sets of integers with no long arithmetic progressions generated by the greedy algorithm, Math. Comput. 33 (1979) 1353–1359.

    MathSciNet  MATH  Google Scholar 

  • V. A. Golubev, Faktorisation der Zahlen der Form x 3 + 4x2 + 3x + 1, Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. K1. 1969,184–191 (see also 191–194; 297–301; 1970, 106–112; 1972, 19–20, 178–179 ).

    Google Scholar 

  • Emil Grosswald, Long arithmetic progressions that consist only of primes and almost primes, Notices Amer. Math. Soc. 26 (1979) A-451.

    Google Scholar 

  • E. Grosswald, Arithmetic progressions of arbitrary length and consisting only of primes and almost primes, J. reine angew. Math. 317 (1980) 200–208.

    MathSciNet  MATH  Google Scholar 

  • Emil Grosswald and Peter Hagis, Arithmetic progressions consisting only of primes, Math. Comput. 33 (1979) 1343–1352; MR 80k: 10054.

    Google Scholar 

  • H. Halberstam, D. R. Heath-Brown, and H.-E. Richert, On almost-primes in short intervals, Proc. Durham Sympos. Anal. Number Theory (to appear).

    Google Scholar 

  • D. R. Heath-Brown, Almost-primes in arithmetic progressions and short intervals, Math. Proc. Cambridge Philos. Soc.,83 (1978) 357–375; MR 58 #10789.

    Google Scholar 

  • Edgar Karst, 12–16 primes in arithmetical progression, J. Recreational Math. 2 (1969) 214–215.

    Google Scholar 

  • E. Karst, Lists of ten or more primes in arithmetical progressions, Scripta Math. 28 (1970) 313–317.

    MATH  Google Scholar 

  • E. Karst and S. C. Root, Teilfolgen von Primzahlen in arithmetischer Progression, Anz. Oesterreich. Akad. Wiss. Math.-Naturwiss. KI. 1972, 19–20 (see also 178–179). Carl Pomerance, The prime number graph, Math. Comput. 33 (1979) 399–408; MR 80d:10013.

    Google Scholar 

  • W. Sierpinski, Remarque sur les progressions arithmétiques, Colloq. Math. 3 (1955) 44–49.

    MathSciNet  Google Scholar 

  • Sol Weintraub, Seventeen primes in arithmetic progression, Math. Comput. 31 (1977) 1030.

    Google Scholar 

  • S. Weintraub, Primes in arithmetic progression, BIT 17 (1977) 239–243.

    Google Scholar 

  • K. Zarankiewicz, Problem 117, Colloq. Math. 3 (1955) 46, 73.

    Google Scholar 

  • S. Chowla, There exists an infinity of 3-combinations of primes in A.P., Proc. Lahore Philos. Soc. 6 no. 2 (1944) 15–16; MR 7, 243.

    Google Scholar 

  • P. Erdös, and A. Rényi, Some problems and results on consecutive primes, Simon Stevin,27 (1950) 115–125; MR 11,644.

    Google Scholar 

  • M. F. Jones, M. Lal, and W. J. Blundon, Statistics on certain large primes, Math. Comput. 21 (1967) 103–107; MR 36 #3707.

    Google Scholar 

  • L. J. Lander and T. R. Parkin, Consecutive primes in arithmetic progression, Math. Comput. 21 (1967) 489.

    MATH  Google Scholar 

  • D. H. Lehmer, Tests for primality by the converse of Fermat’s theorem, Bull. Amer. Math. Soc. 33 (1927) 327–340.

    Article  MathSciNet  MATH  Google Scholar 

  • D. H. Lehmer, On certain chains of primes, Proc. London Math. Soc. 14A (Littlewood 80 volume, 1965 ) 183–186.

    Google Scholar 

  • A. O. L. Atkin and N. W. Rickert, On a larger pair of twin primes. Abstract 79T-A132, Notices Amer. Math. Soc. 26 (1979) A-373.

    Google Scholar 

  • Robert Baillie, New primes of the form k • 2“ + 1, Math. Comput. 33 (1979)1333–1336. E. Bombieri and H. Davenport, Small differences between prime numbers, Proc. Roy. Soc. Ser. A, 293 (1966) 1–18; MR 33 #7314.

    Google Scholar 

  • Richard P. Brent, The first occurrence of large gaps between successive primes, Math. Comput. 27 (1973) 959–963; MR 48 #8360 (and see 35 (1980) 1435–1436 ).

    MATH  Google Scholar 

  • J. H. Cadwell, Large intervals between consecutive primes, Math. Comput. 25 (1971) 909–913.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen Jing-Run, On the distribution of almost primes in an interval II, Sci. Sinica 22 (1979) 253–275; Zbl 408. 10030.

    Google Scholar 

  • R. J. Cook, On the occurrence of large gaps between prime numbers, Glasgow Math. J. 20 (1979) 43–48; MR 80e:10034.

    Google Scholar 

  • Harald Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. 2 (1937) 23–46.

    Google Scholar 

  • R. E. Crandall and M. A. Penk, A search for large twin prime pairs, Math. Comput. 33 (1979) 383–388; MR 81a:10010.

    Google Scholar 

  • D. R. Heath-Brown, The difference between consecutive primes, J. London Math. Soc. (2) 18 (1978) 7–13, 19 (1979) 207–220; 20 (1979) 177–178; MR 58 #10787; 80k: 10041; 81f: 10055.

    Google Scholar 

  • D. R. Heath-Brown and H. Iwaniec, On the difference between consecutive primes, Inventiones Math. 55 (1979) 49–69; MR 81h: 10064; see also Bull. Amer. Math. Soc. (N.S.) 1(1979) 758–760; MR 80d: 10064.

    Google Scholar 

  • Martin N. Huxley, The difference between consecutive primes, Proc. Symp. Pure Math. Amer. Math. Soc. 24 (Analytic Number Theory, St. Louis, 1972) 141–145; MR 50 #9816.

    Google Scholar 

  • Martin N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972) 164–170.

    MathSciNet  Google Scholar 

  • M. N. Huxley, A note on large gaps between prime numbers, Acta Arith. 38 (1980) 63–68.

    MathSciNet  MATH  Google Scholar 

  • M. N. Huxley, Small differences between consecutive primes I, Mathematika,20 (1973) 229–232; MR 50 #4509; II, 24 (1977) 142–152; MR 57 #5925

    Google Scholar 

  • Aleksandar Ivie, On sums of large differences between consecutive primes, Math. Ann. 241 (1979) 1–9; MR 80i:10057.

    Google Scholar 

  • Henryk Iwaniec and Matti Jutila, Primes in short intervals, Ark. Mat. 17 (1979) 167176; Zbl. 408. 10029.

    Google Scholar 

  • L. J. Lander and T. R. Parkin, On first appearance of prime differences, Math. Comput. 21(1967) 483–488; MR 37 #6237.

    Google Scholar 

  • D. H. Lehmer, Table concerning the distribution of primes up to 37 millions, 1957, deposited in UMT file, reviewed in Math. Tables Aids Comput. 13 (1959) 56–57.

    Google Scholar 

  • R. A. Rankin, The difference between consecutive primes, J. London Math. Soc. 13 (1938) 242–247; II Proc. Cambridge Philos. Soc. 36 (1940) 255–266; MR 1–292; III J. London Math. Soc. 22 (1947) 226–230; MR 9–498; IV Proc. Amer. Math. Soc. 1 (1950) 143–150; MR 11–644; V Proc. Edinburgh Math. Soc. (2) 13 (1962–63) 331–332; MR 28 #3978.

    Google Scholar 

  • H. Riesel, Lucasian criteria for the primality of N = h • 2“–1, Math. Comput. 23 (1969) 869–875.

    MathSciNet  MATH  Google Scholar 

  • Daniel Shanks, On maximal gaps between successive primes, Math. Comput. 18 (1964) 646–651; MR 29 #4745.

    Google Scholar 

  • Sol Weintraub, A large prime gap, Math. Comput. 36 (1981) 279.

    Article  MathSciNet  MATH  Google Scholar 

  • H. C. Williams, Primality testing on a computer, Ars Combinatoria,5 (1978) 172–185. H. C. Williams and C. R. Zarnke, A report on prime numbers of the form M =

    Google Scholar 

  • a + 1)22m-’ - 1 and M’ = (6a - 1)22-1, Math. Comput. 22 (1968) 420–422. D. Wolke, Grosse Differenzen zwischen aufeinanderfolgenden Primzahlen, Math. Ann. 218 (1975) 269–271; MR 56 #11930.

    Google Scholar 

  • R. B. Killgrove and K. E. Ralston, On a conjecture concerning the primes, Math Tables Aids Comput. 13 (1959) 121–122; MR 21 #4943.

    Google Scholar 

  • Paul Erdös and Ian Richards, Density functions for prime and relatively prime numbers, Monatsh. Math. 83 (1977) 99–112; Zbl. 355.10034.

    Google Scholar 

  • Douglas Hensley and Ian Richards, On the incompatibility of two conjectures concerning primes, Proc. Symp. Pure Math. Amer. Math. Soc. 24 (Analytic Number Theory, St. Louis, 1972 ) 123–127.

    Google Scholar 

  • Ian Richards, On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem, Bull. Amer. Math. Soc. 80 (1974) 419–438.

    Article  MathSciNet  MATH  Google Scholar 

  • Herschel F. Smith, On a generalization of the prime pair problem, Math. Tables Aids Comput. 11 (1957) 249–254.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Erdös, On the difference of consecutive primes, Bull. Amer. Math. Soc. 54 (1948) 885–889; MR 10,235.

    Google Scholar 

  • P. Erdös and P. Turân, On some new questions on the distribution of prime numbers, Bull. Amer. Math. Soc. 54 (1948) 371–378; MR 9, 498.

    Google Scholar 

  • N. G. W. H. Beeger, On even numbers m dividing 2m - 2, Amer. Math. Monthly, 58 (1951) 553–555; MR 13, 320.

    Google Scholar 

  • R. D. Carmichael, On composite numbers P which satisfy the Fermat congruence aP-1- 1 mod P Amer. Math. Monthly 19 (1912) 22–27.

    Google Scholar 

  • M. Cipolla, Sui numeri composti P the verificiano la congruenza di Fermat aP-’ - 1 (mod P) Annali di Matematica 9 (1904)139–160.

    Google Scholar 

  • P. Erdös, On the converse of Fermat’s theorem, Amer. Math. Monthly 56 (1949) 623624; MR 11 331.

    Google Scholar 

  • P. Erdös, On almost primes, Amer. Math. Monthly 57 (1950) 404–407; MR 12, 80.

    Google Scholar 

  • D. H. Lehmer, On the converse of Fermat’s theorem, Amer. Math. Monthly 43 (1936) 347–354; II, 56 (1949) 300–309; MR 10 681.

    Google Scholar 

  • Andrzej Makowski, On a problem of Rotkiewicz on pseudoprime numbers Elem. Math. 29 (1974)13.

    Google Scholar 

  • A. Mpkowski and A. Rotkiewicz, On pseudoprime numbers of special form Colloq. Math. 20 (1969) 269–271; MR 39 #5458.

    Google Scholar 

  • Carl Pomerance, Illinois J. Math. (to appear). Carl Pomerance, On the distribution of pseudoprimes Math. Comput. (to appear). Carl Pomerance, John L. Selfridge, and Samuel S. Wagstaff, The pseudoprimes to 25 10 9 Math. Comput. 35 (1980) 1003–1026.

    Google Scholar 

  • A. Rotkiewicz, Pseudoprime Numbers and their Generalizations,Student Association of the Faculty of Sciences, Univ. of Novi Sad, 1972; MR 48 #8373; Zbl. 324.10007. A. Rotkiewicz, Sur les diviseurs composés des nombres an - b“, Bull. Soc. Roy. Sci. Liège 32 (1963) 191–195; MR 26 #3645.

    Google Scholar 

  • A. Rotkiewicz, Sur les nombres pseudopremiers de la forme ax + b, Comptes Rendus Acad. Sci. Paris 257 (1963) 2601–2604; MR 29 #61.

    Google Scholar 

  • A. Rotkiewicz, Sur les formules donnant des nombres pseudopremiers, Colloq. Math. 12 (1964) 69–72; MR 29 #3416.

    Google Scholar 

  • A. Rotkiewicz, Sur les nombres pseudopremiers de la forme nk + 1, Elem. Math. 21 (1966) 32–33; MR 33 #112.

    Google Scholar 

  • K. Szymiczek, On prime numbers p, q and r such that pq, pr and qr are pseudoprimes, Colloq. Math. 13 (1964–65) 259–263; MR 31 #4757.

    Google Scholar 

  • K. Szymiczek, On pseudoprime numbers which are products of distinct primes, Amer. Math. Monthly 74 (1967) 35–37; MR 34 #5746.

    Google Scholar 

  • Robert Baillie and Samuel S. Wagstaff, Lucas pseudoprimes, Math. Comput. 35 (1980) 1391–1417.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Erdös, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956) 201–206; MR 18 18.

    Google Scholar 

  • Jay Roderick Hill, Large Carmichael numbers with three prime factors, Abstract 79T-A136, Notices Amer. Math. Soc. 26 (1979) A-374.

    Google Scholar 

  • W. Knödel, Eine obere Schranke für die Anzahl der Carmichaelschen Zahlen kleiner als x, Arch. Math. 4 (1953) 282–284; MR 15 289.

    Google Scholar 

  • D. H. Lehmer, Strong Carmichael numbers, J. Austral. Math. Soc. Ser. A 21 (1976) 508–510.

    Google Scholar 

  • A. J. van der Poorten and A. Rotkiewicz, On strong pseudoprimes in arithmetic progressions, J. Austral. Math. Soc. Ser. A, 29 (1980) 316–321.

    MATH  Google Scholar 

  • S. S. Wagstaff, Large Carmichael numbers, Math. J. Okayama Univ. 22 (1980) 33–41. H. C. Williams, On numbers analogous to Carmichael numbers, Canad. Math. Bull. 20 (1977) 133–143.

    Article  MathSciNet  Google Scholar 

  • M. Yorinaga, Numerical computation of Carmichael numbers, Math. J. Okayama Univ. 20 (1978) 151–163. MR 80d:10026.

    Google Scholar 

  • J. H. Jordan and J. R. Rabung, A conjecture of Paul Erdös concerning Gaussian primes, Math. Comput. 24 (1970) 221–223.

    MathSciNet  MATH  Google Scholar 

  • L. E. Dickson, History of the Theory of Numbers, G. E. Stechert and Co, New York, 1934, Vol. I, Chap. XVIII.

    Google Scholar 

  • G. Giuga, Sopra alcune proprietà caratteristiche dei numeri primi, Period. Math. (4) 23 (1943) 12–27; MR 8, 11.

    Google Scholar 

  • Giuseppe Giuga, Su una presumibile proprietà caratteristica dei numeri primi, Ist. Lombardo Sci. Lett. Rend. Cl. Sci. Mat. Nat. (3) 14 (83) (1950) 511–528; MR 13, 725. W. Sierpinski, Elementary Number Theory,p. 205.

    Google Scholar 

  • C. P. Willans, On formulae for the Nth prime number, Math. Gaz. 48 (1964) 413–415. C. P. Wormell, Formulae for primes, Math. Gaz. 51 (1967) 36–38.

    Google Scholar 

  • P. Erdös, Problems in Number Theory and Combinatorics, Congressus Numerantium XVIII, Proc. 6th Conf. Numerical Math., Manitoba, 1976, 35–58 (esp. p. 53); MR 80e: 10005.

    Google Scholar 

  • Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers Math. Comput. 29 (1975) 79–81.

    Google Scholar 

  • R. Crocker, On the sum of a prime and of two powers of two, Pacific J. Math. 36 (1971) 103–107; MR 43 #3200.

    Google Scholar 

  • P. Erdös, On integers of the form 2’ + p and some related problems Summa Brasil. Math. 2 (1947–51) 113–123; MR 13, 437.

    Google Scholar 

  • Patrick X. Gallagher, Primes and powers of 2 Inventiones Math. 29 (1975) 125–142. W. E. Mientka and R. C. Weitzenkamp, On f-plentiful numbers J. Combin. Theory 7 (1969) 374–377.

    Google Scholar 

  • A. de Polignac, Recherches nouvelles sur les nombres premiers, C. R. Acad. Sci. Paris 29 (1849) 397–401, 738–739.

    Google Scholar 

  • R. C. Vaughan, Some applications of Montgomery’s sieve, J. Number Theory 5 (1973) 64–79; MR 49 #7222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guy, R.K. (1981). Prime Numbers. In: Unsolved Problems in Number Theory. Unsolved Problems in Intuitive Mathematics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1738-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1738-9_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1740-2

  • Online ISBN: 978-1-4757-1738-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics