Skip to main content

Classical Trajectory Studies of the Formation and Unimolecular Decay of Rare Gas Clusters

  • Chapter

Abstract

Within a classical macroscopic picture the stability of a super-saturated vapor is a consequence of the surface related activation barrier associated with the growth of small clusters. As indicated in Fig. 1 the free energy change for the formation of small clusters from a vapor is positive and increases with cluster size until a “critical” cluster size is attained. Beyond the critical cluster size subsequent cluster growth results in a decrease in the free energy and the process occurs spontaneously. Because the growth up to the critical cluster size is responsible for the stability of the supersaturated vapor, it is important that it be well understood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Brady, J. D. Doll, and D. L. Thompson, Cluster dynamics: A classical trajectory study of \(A+A_{n}\leftrightharpoons A_{n+1}^{*}\), J. Chem. Phys. 71: 2467 (1979).

    Article  CAS  Google Scholar 

  2. J. W. Brady, J. D. Doll, and D. L. Thompson, Cluster dynamics: Further classical trajectory studies of \(A+A_{n}\leftrightharpoons A_{n+1}^{*}\), J. Chem. Phys. 73: 2767 (1980).

    Article  CAS  Google Scholar 

  3. J. W. Brady, J. D. Doll, and D. L. Thompson, Cluster dynamics: A classical trajectory study of \(A_{n}^{*}\rightarrow A_{n-1}+A\), J. Chem. Phys. 74: 1026 (1981).

    Article  CAS  Google Scholar 

  4. J. J. Burton, Nucleation theory, in: “Statistical Mechanics, Part A”, B. J. Berne, ed., Plenum, New York (1977), p. 195.

    Chapter  Google Scholar 

  5. F. F. Abraham, “Homogeneous Nucleation Theory”, Academic, New York (1975).

    Google Scholar 

  6. B. Lewis and J. C. Anderson, “Nucleation and Growth of Thin Films”, Academic, New York (1978).

    Google Scholar 

  7. A. C. Zettlemoyer, ed., “Nucleation”, Marcel Dekker, New York (5).

    Google Scholar 

  8. J. P. Hirth and G. M. Pound, Condensation and evaporation; nucleation and growth kinetics, Progr. Mater. Sci. 11: 1 (1963).

    Article  Google Scholar 

  9. J. L. Katz, Condensation of a supersaturated vapor. I. The homogeneous nucleation of the n-alkanes, J. Chem. Phys. 52: 4733 (1970).

    Article  CAS  Google Scholar 

  10. D. B. Dawson, E. J. Wilson, P. G. Hill, and K. C. Russel, Nucleation of supersaturated vapors in nozzles. II. C6H6, CHCl3, CCl3F, and C2H5OH, J. Chem. Phys. 51: 5389 (1969).

    Article  CAS  Google Scholar 

  11. F. F. Abraham, Predicting the critical supersaturation for homogeneous nucleation of vapor condensation, J. Appl. Phys. 39: 3287 (1968).

    Article  CAS  Google Scholar 

  12. P. L. M. Plummer and B. N. Hale, Molecular model for prenucleation water clusters, J. Chem. Phys. 56: 4329 (1972).

    Article  CAS  Google Scholar 

  13. B. N. Hale and P. L. M. Plummer, Molecular model for ice clusters in a supersaturated vapor, J. Chem. Phys. 61: 4012 (1974).

    Article  CAS  Google Scholar 

  14. J. J. Burton, On the validity of homogeneous nucleation theory, Acta Met. 21: 1225 (1973).

    Article  CAS  Google Scholar 

  15. J. J. Burton, Free energy of small face centered cubic clusters of argon, J. Chem. Soc. Faraday Trans. II 69: 540 (1973).

    Article  CAS  Google Scholar 

  16. G. L. Griffin and R. P. Andres, Microscopic capillarity approximation: Free energies of small clusters, J. Chem. Phys. 71: 2522 (1979).

    Article  CAS  Google Scholar 

  17. K. Binder and D. Stauffer, Monte Carlo study of the surface area of liquid droplets, J. Stat. Phys. 6: 49 (1972).

    Article  Google Scholar 

  18. J. K. Lee, J. A. Barker, and F. F. Abraham, Theory and Monte Carlo simulation of physical clusters in the imperfect vapor, J. Chem. Phys. 58: 3166 (1973).

    Article  CAS  Google Scholar 

  19. H. W. Harrison, W. C. Schieve, and J. S. Turner, Molecular dynamics of two-dimensional gases and the formation of bound states, J. Chem. Phys. 56: 710 (1972).

    Article  CAS  Google Scholar 

  20. W. C. Schieve and H. W. Harrison, Molecular dynamics study of dimer formation in three dimensions, J. Chem. Phys. 61: 700 (1974).

    Article  CAS  Google Scholar 

  21. M. Synek, W. C. Schieve, and H. W. Harrison, Molecular dynamics study of polymer formation, J. Chem. Phys. 67: 2916 (1977).

    Article  CAS  Google Scholar 

  22. W. H. Zurek and W. C. Schieve, Molecular dynamics evidence for vapor-liquid nucleation, Phys. Lett. 67A: 42 (1978).

    CAS  Google Scholar 

  23. M. J. Mandell, J. P. McTague, and A. Rahman, Crystal nucleation in a three-dimensional Lennard-Jones system: A molecular dynamics study, J. Chem. Phys. 64: 3699 (1976).

    Article  CAS  Google Scholar 

  24. C. S. Hsu and A. Rahman, Crystal nucleation and growth in liquid rubidium, J. Chem. Phys. 70: 5234 (1979).

    Article  CAS  Google Scholar 

  25. D. J. McGinty, Molecular dynamics studies of the properties of small clusters of argon atoms, J. Chem. Phys. 58: 4733 (1973).

    Article  CAS  Google Scholar 

  26. C. L. Briant and J. J. Burton, Molecular dynamics study of the structure and thermodynamic properties of argon microclusters, J. Chem. Phys. 63: 2045 (1975).

    Article  CAS  Google Scholar 

  27. R. D. Etters, R. Danilowicz, and J. Kaelberer, Metastable states of small rare gas crystallites, J. Chem. Phys. 67: 4145 (1977).

    Article  CAS  Google Scholar 

  28. M. Rao, B. J. Berne, and M. H. Kalos, Computer simluation of the nucleation and thermodynamics of microclusters, J. Chem. Phys. 68: 1325 (1978).

    Article  CAS  Google Scholar 

  29. E. R. Buckle, A kinetic theory of cluster formation in the condensation of gases, Trans. Faraday Soc. 65: 1267 (1969).

    Article  CAS  Google Scholar 

  30. F. F. Abraham, Multistate kinetics in non-steady state nucleation: A numerical solution, J. Chem. Phys. 51: 1632 (1969).

    Article  CAS  Google Scholar 

  31. S. H. Bauer and D. J. Frurip, Homogeneous nucleation in metal vapors. 5. A self-consistent kinetic model, J. Phys. Chem. 81: 1015 (1977).

    Article  CAS  Google Scholar 

  32. R. E. Howard, R. E. Roberts, and M. J. DelleDonne, Three-body effects in the exchange and dissociation encounters for Ar + Ar2, J. Chem. Phys. 65: 3067 (1976).

    Article  CAS  Google Scholar 

  33. M. R. Hoare and P. Pal, Physical cluster mechanics: Statics and energy surfaces for monatomic systems, Advan. Phys. 20: 161 (1971).

    Article  CAS  Google Scholar 

  34. M. R. Hoare and P. Pal, Statics and stability of small cluster nuclei, Nature 230: 5 (1971).

    CAS  Google Scholar 

  35. M. R. Hoare and P. Pal, Statics and stability of small assemblies of atoms, J. Cryst. Growth 17: 77 (1972).

    Article  CAS  Google Scholar 

  36. R. N. Porter and L. M. Raff, Classical trajectory methods in molecular collisions, in: “Dynamics of Molecular Collisions, Part B”, W. H. Miller, ed., Plenum, New York (1976).

    Google Scholar 

  37. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, “Molecular Theory of Gases and Liquids”, Wiley, New York (1954).

    Google Scholar 

  38. H. Goldstein, “Classical Mechanics”, Addison-Wesley, Reading, MA (1950).

    Google Scholar 

  39. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21: 1087 (1953).

    Article  CAS  Google Scholar 

  40. W. W. Wood and F. R. Parker, Monte Carlo equation of state of molecules interacting with the Lennard-Jones potential. I. A supercritical isotherm at about twice the critical temperature, J. Chem. Phys. 27: 720 (1957).

    Article  CAS  Google Scholar 

  41. J. A. Barker, “Lattice Theories of the Liquid State”, MacMillan, New York (1963).

    Google Scholar 

  42. J. P. Valleau and S. G. Whittington, A guide to Monte Carlo for statistical mechanics: 1. Highways, in: “Statistical Mechanics, Part A”, B. J. Berne, ed., Plenum, New York (1977), p. 137.

    Google Scholar 

  43. W. W. Wood, Computer studies on fluid systems of hard-core particles, in: “Fundamental Problems in Statistical Mechanics III”, E. G. D. Cohen, ed., North Holland, Amsterdam (1975), p. 331.

    Google Scholar 

  44. W. H. Miller and T. F. George, Analytic continuation of classical mechanics for classically forbidden collision processes, J. Chem. Phys. 56: 5668 (1972).

    Article  CAS  Google Scholar 

  45. E. Isaacson and H. B. Keller, “Analysis of Numerical Methods”, Wiley, New York (1966).

    Google Scholar 

  46. F. H. Stillinger, Jr., Rigorous basis of the Frenkel-Band theory of association equilibrium, J. Chem. Phys. 38: 1486 (1963).

    Article  CAS  Google Scholar 

  47. K. Binder, Monte Carlo simulation of physical clusters of water molecules, J. Chem. Phys, 63: 2265 (1975).

    Article  CAS  Google Scholar 

  48. F. F. Abraham, Monte Carlo simulation of physical clusters of water molecules, J. Chem. Phys. 61: 1221 (1974).

    Article  CAS  Google Scholar 

  49. F. F. Abraham and J. A, Barker, Reply to K. Binder’s comments on Monte Carlo simulation of physical clusters, J. Chem. Phys. 63: 2266 (1975).

    Article  CAS  Google Scholar 

  50. See, for example, P. J. Robinson and K. A. Holbrook, “Unimolecular Reactions”, Wiley, New York (1972).

    Google Scholar 

  51. See, for example, C. A. Parr, A. Kuppermann, and R. N. Porter, Classical dynamics of triatomic systems: Energized harmonic molecules, J. Chem. Phys. 66: 2914 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brady, J.W., Doll, J.D., Thompson, D.L. (1981). Classical Trajectory Studies of the Formation and Unimolecular Decay of Rare Gas Clusters. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics