Advertisement

Calculation of Potential Energy Surfaces for HCO and HNO Using Many-Body Methods

  • George F. Adams
  • Gary D. Bent
  • Rodney J. Bartlett
  • George D. Purvis

Abstract

It has been recognized, since the work of Eyring and Polanyi,1 that an understanding of detailed reaction dynamics requires a knowledge of the topographical features of the potential energy hyper-surfaces pertinent to the chemical reaction. The task of the theoretician is to refine electronic structure calculations so that electronic energy differences on an energy surface may be predicted with “chemical accuracy”, or about 2 kcal/mol. Recent publications, by several different groups, establish the importance of electron correlation effects in studying even qualitative aspects of potential energy surfaces,2-5 and experience to date indicates that neglect of the effects of electron correlation can lead to substantial errors in predicted heats of reaction.

Keywords

Potential Energy Surface Dissociation Energy Ground Electronic State Potential Energy Curve Formyl Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Eyring and M. Polanyi, Über einfache Gasreaktionen, Z. Phys. Chem. B 12: 279 (1931).Google Scholar
  2. 2.
    C. W. Bauschlicher, Jr., K. Haber, H. F. Schaefer III, and C. F. Bender, Concerted non-least-motion-pathway for the singlet methylene Insertion reaction CH2(1A1) + H2 → CH4, J. Amer. Chem. Soc. 99: 3610 (1977).CrossRefGoogle Scholar
  3. 3.
    G. F. Adams, G. D. Bent, G. D. Purvis, and R. J. Bartlett, The electronic structure of the formyl radical, HCO, J. Chem. Phys. 71: 3697 (1979).CrossRefGoogle Scholar
  4. 4.
    L. B. Harding and J. A. Pople, A Moller-Plesset study of the H4CO potential energy surface, to be published.Google Scholar
  5. 5.
    R. J. Bartlett and G. D. Purvis, Molecular applications of coupled cluster and many-body perturbation methods, Physica Scripta 21: 255 (1980).CrossRefGoogle Scholar
  6. 6.
    G. D. Bent, G. F. Adams, R. J. Bartlett, and G. D. Purvis, Many-body perturbation theory electronic structure calculations for the methoxy radical. I. Determination of Jahn-Teller energy surfaces, spin-orbit splitting, and Zeeman effect, manuscript submitted.Google Scholar
  7. 7.
    R. A. Fifer and H. E. Holmes, High temperature pyrolysis of methyl and ethyl nitrate, in: “Proceedings of the Seventeenth Symposium (International) of the Combustion Institute”, Combustion Institute, Pittsburgh (1979).Google Scholar
  8. 8.
    K. A. Brueckner and C. A. Levinson, Approximate reduction of the many-body problem for strongly interacting particles to a problem of self-consistent fields, Phys. Rev. 97: 1344 (1955).CrossRefGoogle Scholar
  9. K. A. Brueckner, Two-body forces and nuclear saturation. III. Details of the structure of the nucleus, Phys. Rev. 97: 1353 (1955).CrossRefGoogle Scholar
  10. K. A. Brueckner, R. J. Eden, and N. C. Francis, High-energy reactions and the evidence for correlations in the nuclear ground-state wavefunction, Phys. Rev. 98: 1445 (1955).CrossRefGoogle Scholar
  11. K. A. Brueckner, Many-body problems for strongly interacting particles. II. Linked cluster expansion, Phys. Rev. 100: 36 (1955).CrossRefGoogle Scholar
  12. 9.
    J. Goldstone, Derivation of the Brueckner many-body theory, Proc. Roy. Soc. Lond., Ser. A 239: 267 (1957).CrossRefGoogle Scholar
  13. 10.
    H. P. Kelly, Applications of many-body diagram techniques in atomic physics, Advan. Chem. Phys. 14: 129 (1969).CrossRefGoogle Scholar
  14. 11.
    H. Kummel, Compound pair states in imperfect Fermi gases, Nucl. Phys. 22: 177 (1969).Google Scholar
  15. 12.
    J. Čížek, On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules, Advan. Chem. Phys. 14: 33 (1969).Google Scholar
  16. J. Čížek, J. J. Paldus, and L. Stroubkova, Cluster expansion analysis for de-localized systems, Int. J. Quantum Chem. 3: 149 (1969).CrossRefGoogle Scholar
  17. 13.
    J. J. Paldus and J. Čížek, Relation of coupled pair theory, CI, and some other many-body approaches, in: “Energy, Structure, and Reactivity”, D. W. Smith and W. B. McCrae, eds., Wiley, New York (1973), p. 389.Google Scholar
  18. 14.
    R. J. Bartlett and G. D. Purvis, Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem, Int. J. Quantum Chem. 14: 561 (1978).CrossRefGoogle Scholar
  19. 15.
    R. J. Bartlett and I. Shavitt, Comparison of high-order many-body perturbation theory and configuration interaction for H2O, Chem. Phys. Lett. 50: 190 (1978).CrossRefGoogle Scholar
  20. 16.
    R. J. Bartlett, I. Shavitt, and G. D. Purvis, The quartic force field of H2O determined by many-body methods that include quadruple excitation effects, J. Chem. Phys. 71: 781 (1979).CrossRefGoogle Scholar
  21. 17.
    L. T. Redmon, G. D. Purvis, and R. J. Bartlett, Accurate binding energies of diborane, borane carbonyl, and borazane as determined by many-body perturbation theory, J. Amer. Chem. Soc. 101: 2856 (1979).CrossRefGoogle Scholar
  22. 18.
    L. T. Redmon, G. D. Purvis, and R. J. Bartlett, The unimolecular isomerization of methyl isocyanide to methyl cyanide (acetonitrile), J. Chem. Phys. 69: 5386 (1978).CrossRefGoogle Scholar
  23. 19.
    L. T. Redmon, G. D. Purvis, and R. J. Bartlett, Correlation effects in the isomeric cyanides: HNC ↔ HCN, LiNC ↔ LiCN, and BNC ↔ BCN, J. Chem. Phys. 72: 986 (1980).CrossRefGoogle Scholar
  24. 20.
    J. A. Pople, R. Seeger, and R. Krishnan, Variational configuration interaction methods and comparison with perturbation theory, Int. J. Quantum Chem. Symp. 11: 149 (1977).CrossRefGoogle Scholar
  25. 21.
    J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Electron correlation theories and their application to the study of simple reaction potential surfaces, Int. J. Quantum Chem. 14: 545 (1978).CrossRefGoogle Scholar
  26. 22.
    M. A. Robb, Application of many-body perturbation methods in a discrete orbital basis set, Chem. Phys. Lett. 20: 274 (1973).CrossRefGoogle Scholar
  27. 23.
    O. Sinanoglu, Many-electron theory of atoms, molecules and their interactions, Advan. Chem. Phys. 6: 315 (1964).CrossRefGoogle Scholar
  28. 24.
    D. I. Freemen and M. Karplus, Many-body perturbation theory applied to molecules: Analysis and correlation energy calculation for Li2, N2, and H2, J. Chem. Phys. 64: 2641 (1976).CrossRefGoogle Scholar
  29. 25.
    F. E. Harris, Coupled cluster methods for excitation energies, Int. J. Quantum Chem. Symp. 11: 403 (1977).Google Scholar
  30. 26.
    R. J. Bartlett and G. D. Purvis, Electron correlation in large molecules with many-body methods, Ann. NY Acad. Sci., in press.Google Scholar
  31. 27.
    S. P. Walch, T. H. Dunning, Jr., R. C. Raffinetti, and F. W. Bobrowicz, A theoretical study of the potential energy surface for O(3P) + H2, J. Chem. Phys. 72: 406 (1980).CrossRefGoogle Scholar
  32. 28.
    G. D. Purvis and R. J. Bartlett, The potential energy curve for the X1+ g state of Mg2 calculated with coupled-pair many-electron theory, J. Chem. Phys. 71: 549 (1979).CrossRefGoogle Scholar
  33. 29.
    R. Krishnan, M. J. Frisch, and J. A. Pople, Contribution of triple substitutions to the electron correlation energy in fourth-order perturbation theory, J. Chem. Phys. 72: 4244 (1980).CrossRefGoogle Scholar
  34. 30.
    B. H. Brandow, Linked cluster expansions for the nuclear many-body problem, Rev. Mod. Phys. 39: 771 (1967).CrossRefGoogle Scholar
  35. 31.
    I. Lindgren, A coupled-cluster approach to the many-body perturbation theory for open-shell systems, Int. J. Quantum Chem. Symp. 12: 33 (1978).Google Scholar
  36. 32.
    G. Hose and V. Kaldor, A general-model-space diagrammatic perturbation theory, Physica Scripta 21: 357 (1980).CrossRefGoogle Scholar
  37. 33.
    T. H. Dunning, Jr., Gaussian basis functions for use in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first-row atoms, J. Chem. Phys. 53: 2823 (1970).CrossRefGoogle Scholar
  38. 34.
    S. Huzinaga, Gaussian-type functions for polyatomic systems. I., J. Chem. Phys. 42: 1293 (1965).CrossRefGoogle Scholar
  39. 35.
    T. H. Dunning, Jr. and P. J. Hay, Gaussian basis sets for molecular calculations, in: “Modern Theoretical Chemistry, Vol. 3, Methods of Electronic Structure Theory”, H. F. Schaefer III, ed., Plenum, New York (1977).Google Scholar
  40. 36.
    P. A. Benioff, Ab initio calculations of the vertical electronic spectra of NO2, NO+ 2, and NO 2, J. Chem. Phys. 68: 3405 (1978).CrossRefGoogle Scholar
  41. 37.
    J. Almlof, in: “Proceedings of the Second Seminar on Computational Problems in Chemistry, Strosbourg, France, 1972” (1973).Google Scholar
  42. 38.
    The program GRNFNC, written by G. D. Purvis, does SCF iterations and integral transformations. The program UMBPT, written by R. J. Bartlett and G. D. Purvis, does MBPT, CCD, and VP-DCI.Google Scholar
  43. 39.
    A. Kormornicki, National Resource for Computations in Chemistry Software Catalog, Vol. 1, Program No. QH04(GRADSCF) (1980).Google Scholar
  44. 40.
    P. C. Hariharan and J. A. Pople, Accuracy of AHm equilibrium geometries by single determinant molecular orbital theory, Mol. Phys. 27: 209 (1974).CrossRefGoogle Scholar
  45. 41.
    D. J. Seery and C. T. Bowman, An experimental and analytical study of methane oxidation behind shock waves, Combustion Flame 14: 37 (1970).CrossRefGoogle Scholar
  46. 42.
    J. F. McKellar and R. G. W. Norrish, The combustion of gaseous aldehydes studied by flash photolysis and kinetic spectroscopy, Proc. Roy. Soc. Lond., Ser. A 254: 147 (1960).CrossRefGoogle Scholar
  47. 43.
    C. K. Westbrook, J. Creighton, C. Lund, and F. L. Dryer, A numerical model of chemical kinetics of combustion in a turbulent flow reactor, J. Phys. Chem. 81: 2542 (1977).CrossRefGoogle Scholar
  48. 44.
    P. Botschwina, Unrestricted Hartree-Fock calculation of force constants and vibrational frequencies of the HCO molecule, Chem. Phys. Lett. 29: 98 (1974).CrossRefGoogle Scholar
  49. 45.
    P. Cremaschi, A. Gamba, G. Morosi, and M. Simonetta, Influence of spin-contamination and basis set on electrostatic potential and hfs coupling constants of organic radicals, Theoret. Chim. Acta 41: 177 (1976).CrossRefGoogle Scholar
  50. 46.
    P. J. Bruna, R. J. Buenker, and S. D. Peyerimhoff, Ab initio study of the structure, isomers, and vertical electronic spectrum of the formyl radical, HCO, J. Mol. Struct. 32: 217 (1976).CrossRefGoogle Scholar
  51. 47.
    T. H. Dunning, Theoretical characterization of the potential energy surface of the ground state of the HCO system, J. Chem. Phys. 73: 2304 (1980).CrossRefGoogle Scholar
  52. 48.
    P. Warneck, Photoionisation von Methanol und Formaldehyd, Z. Naturforsch. A 29: 350 (1974).Google Scholar
  53. 49.
    J. M. Brown and D. A. Ramsay, Axis switching in the \(A\tilde{}^{2}A{}''-X\tilde{}^{2}A{}'\) transition of HCO: Determination of molecular geometry, Can. J. Phys. 53: 2232 (1975).CrossRefGoogle Scholar
  54. 50.
    H. Y. Wang, J. A. Eyre, and L. M. Dorfman, Activation energy for the gas-phase reaction of hydrogen atoms with carbon monoxide, J. Chem. Phys. 59: 5199 (1973).CrossRefGoogle Scholar
  55. 51.
    D. E. Milligan and M. E. Jacox, Matrix isolation study of the infrared and ultraviolet spectra of the free radical HCO. The hydrocarbon flame bands, J. Chem. Phys. 51: 277 (1969).CrossRefGoogle Scholar
  56. 52.
    J. P. Reilly, J. H. Clark, C. B. Moore, and G. C. Pimentel, HCO production, vibrational relaxation, chemical kinetics, and spectroscopy following laser photolysis of formaldehyde, J. Chem. Phys. 69: 4381 (1978).CrossRefGoogle Scholar
  57. 53.
    J. W. C. Johns, A. R. W. McKellar, and M. Riggin, Laser magnetic resonance spectroscopy of the ν2 band of HCO at 9.25 μM, J. Chem. Phys. 67: 2427 (1977).CrossRefGoogle Scholar
  58. 54.
    B. J. Rosenberg, W. C. Ermler, and I. Shavitt, Ab initio SCF and CI studies on the ground state of the water molecule. II. Potential energy and property surfaces, J. Chem. Phys. 65: 4072 (1976).CrossRefGoogle Scholar
  59. 55.
    M. A. A. Clyne and B. A. Thrush, Mechanism of chemiluminescent reactions involving nitric oxide — the H + NO reaction, Disc. Faraday Soc. 33: 139 (1962).CrossRefGoogle Scholar
  60. 56.
    A. W. Salotto and L. Burnelle, Investigations on the unrestricted Hartree-Fock method as a tool for computing potential energy surfaces, J. Chem. Phys. 52: 2936 (1970).CrossRefGoogle Scholar
  61. 57.
    A. A. Wu, S. D. Peyerimhoff, and R. J. Buenker, Theoretical study of the electronic spectrum of HNO using SCF and CI calculations, Chem. Phys. Lett. 35: 316 (1975).CrossRefGoogle Scholar
  62. 58.
    P. A. Freedman, Predissociation in the HNO molecule, Chem. Phys. Lett, 44: 605 (1976).CrossRefGoogle Scholar
  63. 59.
    J. K. Cashion and J. C. Polanyi, Infrared chemiluminescence from the gaseous reaction of atomic H plus NO; HNO in emission, J. Chem. Phys. 30: 317 (1959).CrossRefGoogle Scholar
  64. 60.
    M. J. Y. Clement and D. A. Ramsay, Predissociation in the HNO molecule, Can. J. Phys. 39: 205 (1961).CrossRefGoogle Scholar
  65. 61.
    M. A. A. Clyne and B. A. Thrush, Reaction of hydrogen atoms with nitric oxide, Trans. Faraday Soc. 57: 1305 (1961).CrossRefGoogle Scholar
  66. 62.
    M. Krauss, Test of a kinetics scheme: Emission in H(2S) + NO(2π), J. Res. Natl. Bur. Std. 73A: 191 (1969).CrossRefGoogle Scholar
  67. 63.
    O. Nomura and S. Iwato, Potential energy curves for low-lying states of HNO, Chem. Phys. Lett. 66: 523 (1979).CrossRefGoogle Scholar
  68. 64.
    F. W. Dalby, The spectrum and structure of the HNO molecule, Can. J. Phys. 36: 1336 (1958).CrossRefGoogle Scholar
  69. 65.
    J. L. Bancroft, J. M. Hollas, and D. A. Ramsay, The absorption spectrum of HNO and DNO, Can. J. Phys. 40: 322 (1962).CrossRefGoogle Scholar
  70. 66.
    T. Ishiwata, H. Akimoto, and I. Tanaka, Chemiluminescence of HNO sensitized by O2(1Δg) in the reaction systems of O(3P) + C3H6 + NO + O2(1Δg)/O2 and H + NO + O2(1Δg)/O2, Chem. Phys. Lett. 27: 260 (1974).CrossRefGoogle Scholar
  71. 67.
    T. Ishiwata, I. Tanaka, and H. Akimoto, Excitation of HNO by O2(1Δg), J. Phys. Chem. 82: 1336 (1978).CrossRefGoogle Scholar
  72. 68.
    G. R. Williams, A theoretical study of the excited states of the nitroxyl radical (HNO) via the equations of motion method, Chem. Phys. Lett. 30: 495 (1975).CrossRefGoogle Scholar
  73. 69.
    A. A. Wu, S. D. Peyerimhoff, and R. J. Buenker, Theoretical study of the electronic spectrum of HNO using SCF and CI calculations, Chem. Phys. Lett. 35: 315 (1975).CrossRefGoogle Scholar
  74. 70.
    K. P. Huber and G. Herzberg, “Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules”, Van Nostrand Reinhold, New York (1979).CrossRefGoogle Scholar
  75. 71.
    R. N. Clough, B. A. Thrush, D. A. Ramsay, and J. G. Stamper, The vibrational frequencies of HNO, Chem. Phys. Lett. 23: 155 (1973).CrossRefGoogle Scholar
  76. 72.
    J. W. C. Johns and A. R. W. McKellar, Laser stark spectroscopy of the fundamental bands of HNO (ν2 and ν3) and DNO (ν1 and ν2), J. Chem. Phys. 66: 1217 (1977).CrossRefGoogle Scholar
  77. 73.
    G. F. Adams, unpublished results.Google Scholar
  78. 74.
    J. Troe, Theory of thermal unimolecular reactions at low pressures. I. Solutions of the master equation, J. Chem. Phys. 66: 4745 (1977).CrossRefGoogle Scholar
  79. 75.
    J. Troe, Theory of thermal unimolecular reactions at low pressures. II. Strong collision rate constants. Applications, J. Chem. Phys. 66: 4758 (1977).CrossRefGoogle Scholar
  80. 76.
    J. Troe, Predictive possibilities of unimolecular rate theory, J. Phys. Chem. 83: 114 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • George F. Adams
    • 1
  • Gary D. Bent
    • 1
  • Rodney J. Bartlett
    • 2
  • George D. Purvis
    • 2
  1. 1.U.S. Army Ballistic Research LaboratoryAberdeen Proving GroundUSA
  2. 2.Battelle Memorial InstituteColumbusUSA

Personalised recommendations