Advertisement

Classical Trajectory Studies of Kev Ions Interacting with Solid Surfaces

  • Barbara J. Garrison

Abstract

Classical dynamics has been used extensively over the past twenty years to aid in our microscopic understanding of chemical reactions and properites of matter. As our experience has grown, the complexity of the systems studied has expanded from simple atom-diatom collisions1,2 and hard sphere liquids3 to more complicated gas-phase reactants (see the chapters by Schatz and Elgersma in this book) and more realistic liquids.4 Dynamics calculations allow the determination of average experimental quantities, and at the same time, they give physical insight into the microscopic mechanisms. Results of the calculations are very visual, allowing one to picture the motion of particles. The variety of applications of classical dynamics in chemistry is evidenced by the contributions to this volume.

Keywords

Angular Distribution Pair Potential Classical Dynamic Crystal Face Single Crystal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.(a)
    F. T. Wall, L. A. Hiller, Jr., and J. Mazur, Statistical computation of reaction probabilities, J. Chem. Phys. 29: 255 (1958).CrossRefGoogle Scholar
  2. (b).
    F. T. Wall, L. A. Hiller, Jr., and J. Mazur, Statistical computation of reaction probabilities, II, J. Chem. Phys. 35: 1284 (1961).CrossRefGoogle Scholar
  3. (c).
    D. L. Bunker, Monte Carlo calculations of triatomic dissociation rates. I. N2O and O3, J. Chem. Phys. 37: 393 (1962).CrossRefGoogle Scholar
  4. (d).
    J. C. Keck, Statistical investigation of dissociation cross-sections for diatoms, Disc. Faraday Soc. 33: 173 (1962).CrossRefGoogle Scholar
  5. (e).
    N. C. Blais and D. L. Bunker, Monte Carlo calculations. III. A general study of biomolecular exchange reactions, J. Chem. Phys. 39: 315 (1963).CrossRefGoogle Scholar
  6. 2.
    See also, for example, D. G. Truhlar and J. T. Muckerman, Reactive scattering cross sections: Quasiclassical and semiclassical methods, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum Press, New York (1979), p. 505.CrossRefGoogle Scholar
  7. 3.
    B. J. Adler and T. E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31: 459 (1959).CrossRefGoogle Scholar
  8. 4.
    See, for example, “Computer Modeling of Matter”, P. Lykos, ed., ACS Symposium Series, No. 86, Washington, D.C. (1978).Google Scholar
  9. 5.
    D. E. Harrison, Jr., W. L. Moore, Jr., and H. T. Holcombe, Computer simulation of sputtering II, Rad. Eff. 17: 167 (1973).CrossRefGoogle Scholar
  10. 6.
    D. E. Harrison, Jr., P. W. Kelly, B. J. Garrison, and N. Winograd, Low energy ion impact phenomena on single crystal surfaces, Surface Sci. 76: 311 (1978).CrossRefGoogle Scholar
  11. 7.
    B. J. Garrison, N. Winograd, and D. E. Harrison, Jr., Formation of small metal clusters by ion bombardment of single crystal surfaces, J. Chem. Phys. 69: 1440 (1978).CrossRefGoogle Scholar
  12. 8.
    N. Winograd, D. E. Harrison, Jr., and B. J. Garrison, Structure sensitive factors in the ion bombardment of single crystal surfaces, Surface Sci. 78: 467 (1978).CrossRefGoogle Scholar
  13. 9.
    N. Winograd, B. J. Garrison, and D. E. Harrison, Jr., Angular distributions of ejected particles from ion bombarded clean and reacted single crystal surfaces, Phys. Rev. Lett. 41: 1120 (1978).CrossRefGoogle Scholar
  14. 10.
    B. J. Garrison, N. Winograd, and D. E. Harrison, Jr., Atomic and molecular ejection from ion bombarded reacted single crystal surfaces, Phys. Rev. B 18: 6000 (1978).CrossRefGoogle Scholar
  15. 11.
    D. E. Harrison, Jr., W. L. Gay, and H. M. Effron, Algorithm for the calculation of the classical equations of motion of an N-body system, J. Math. Phys. 10: 1179 (1969).CrossRefGoogle Scholar
  16. 12.
    K. E. Foley and B. J. Garrison, Mechanisms of particle ejection from Cu(001) induced by directional orientation of the bombarding primary ion, J. Chem. Phys. 72: 1018 (1980).CrossRefGoogle Scholar
  17. 13.
    B. J. Garrison, Theory of ion scattering from single crystals, Surface Sci. 87: 683 (1979).CrossRefGoogle Scholar
  18. 14.
    N. Winograd, B. J. Garrison, and D. E. Harrison, Jr., Mechanisms of CO ejection from ion bombarded single crystal surfaces, J. Chem. Phys. 73: 3473 (1980).CrossRefGoogle Scholar
  19. 15.
    B. J. Garrison, Mechanisms of ejection of organic molecules from surfaces by keV ion bombardment, J. Amer. Chem. Soc. 102: 6553 (1980).CrossRefGoogle Scholar
  20. 16.
    B. J. Garrison, manuscript in preparation.Google Scholar
  21. 17.
    D. M. Heyes, M. Barber, and J. H. R. Clarke, The use of sputtering as a method for analyzing surface chemical compositions: A molecular dynamics study, First International Meeting on SIMS, Muenster, Germany, September 1977.Google Scholar
  22. 18.
    N. Winograd, B. J. Garrison, T. Fleisch, W. N. Delgass, and D. E. Harrison, Jr., Structure sensitive factors in molecular cluster ejection by ion bombardment of Ni single crystals reacted with CO and O2, J. Vac. Sci. Tech. 16: 629 (1979).CrossRefGoogle Scholar
  23. 19.
    G. D. Magnuson and C. E. Carlston, Sputtering yield of single crystals bombarded by 1-to 10-keV ions, J. Appl. Phys. 34: 3267 (1963).CrossRefGoogle Scholar
  24. 20.
    M. T. Robinson and A. L. Southern, Sputtering experiments with 1-to 5-keV Ar+ ions. II. Monocrystalline targets of Al, Cu, and Au, J. Appl. Phys. 38: 2969 (1967).CrossRefGoogle Scholar
  25. 21.
    D. E. Harrison, Jr., Full lattice simulation of atom ejection mechanisms and sputtering, in: “Proceedings of the Symposium on Sputtering, Perchtoldsdorf-Wien, Austia, April 28–30, 1980”, P. Varge, G. Betz, and F. P. Viebock, eds., Institut für Allgemein Technische Universität Wien, Austria.Google Scholar
  26. 22.
    A. Anderman, AFCRL-66-688 Atomics International, Canoga Park, CA, unpublished. Taken from reference 5.Google Scholar
  27. 23.
    B. Rosen, “International Tables of Selected Constants”, Pergamon Press, New York (1970).Google Scholar
  28. 24.
    D. E. Harrison, Jr. and C. B. Delaplain, Computer simulation of the sputterings of clusters, J. Appl. Phys. 47: 2242 (1976).Google Scholar
  29. 25.
    M. Barber, R. S. Bardoli, J. C. Vickerman, and J. Wolstenholme, SIMS study of adsorption on Ni(110), (100), and (111), in: “Proceedings of the 7th International Vacuum Congress and 3rd International Conference on Solid Surfaces”, R. Dobrozemsky, ed., F. Berger und Söhne, Vienna (1977), p. 983.Google Scholar
  30. 26.
    For a good review of this topic, see G. Carter and J. S. Colligan, “Ion Bombardment of Solids”, American Elsevier, New York (1968).Google Scholar
  31. 27.
    S. P. Holland, B. J. Garrison, and N. Winograd, Surface structure from angle-resolved SIMS: Oxygen on Cu(001), Phys. Rev. Lett. 43: 220 (1979).CrossRefGoogle Scholar
  32. 28.
    S. P. Holland, B. J. Garrison, and N. Winograd, Azimuthal anisotropies of dimer ions ejected from ion bombarded Ni(001), Phys. Rev. Lett. 44: 756 (1980).CrossRefGoogle Scholar
  33. 29.
    M. van Hove and S. Y. Tong, Chemisorption bond lengths of chalcogen overlayers at a low coverage by convergent perturbation methods, J. Vac. Sci. Tech. 12: 230 (1975).CrossRefGoogle Scholar
  34. 30.
    S. Kapur and B. J. Garrison, Theoretical studies of the angular distributions of oxygen atoms ejected from an ion bombarded c(2×2) overlayer of oxygen on Ni(001): I. Effect of geometry and II. Effect of potential, manuscripts in preparation.Google Scholar
  35. 31.
    R. A. Gibbs and N. Winograd, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Barbara J. Garrison
    • 1
  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations