Skip to main content

Vibrational Predissociation of van der Waals Molecules and Intermolecular Potential Energy Surfaces

  • Chapter
Potential Energy Surfaces and Dynamics Calculations

Abstract

Historically, spectroscopic experiments have been primarily responsible for defining structures and potential energy surfaces of chemically bonded molecules. These experimental results and the theoretical models of quantum chemistry have been worked up together to give us the detailed understanding of the chemical bond that we now have. In the last decade this history is being rerun, but now the objects of study are van der Waals molecules. Spectroscopy on these weakly bound complexes, produced at low temperatures where their stability is favored, has yielded structures and, often with the help of scattering experiments, rather complete intermolecular potential energy surface mappings. The structures that have been found are often surprising since for van der Waals molecules we do not have the reliable guides for geometries that we have for chemically bonded molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Klemperer, Molecular spectroscopy of weakly bound complexes, Ber. Bunsenges. Phys. Chem. 18: 128 (1974).

    Google Scholar 

  2. G. Ewing, Structure and properties of van der Waals molecules, Acc. Chem. Res. 8: 185 (1975).

    Article  CAS  Google Scholar 

  3. B. Blaney and G. Ewing, Van der Waals molecules, Ann. Rev. Phys. Chem. 27: 553 (1976).

    Article  CAS  Google Scholar 

  4. G. Ewing, The spectroscopy of van der Waals molecules, Can. J. Phys. 54: 487 (1976).

    Article  CAS  Google Scholar 

  5. R. J. LeRoy and J. S. Carley, Spectroscopy and potential energy surfaces of van der Waals molecules, Advan. Chem. Phys. 42: 353 (1980).

    Article  Google Scholar 

  6. D. H. Levy. Laser spectroscopy of cold gas-phase molecules, Annu. Rev. Phys. Chem. 31: 197 (1980).

    Article  CAS  Google Scholar 

  7. J. D. van der Waals, Dissertation, Leiden, The Netherlands, 1972.

    Google Scholar 

  8. T. Kihara, “Intermolecular Forces”, Wiley, New York (1978).

    Google Scholar 

  9. J. M. Parson, P. E. Siska, and Y. T. Lee, Intermolecular potentials from crossed-beam differential elastic scattering measurements. IV. Ar + Ar, J. Chem. Phys. 56: 1511 (1972).

    Article  CAS  Google Scholar 

  10. K. Docken and T. P. Schafer, Spectroscopic information on ground state Ar2, Kr2 and Xe2 from interatomic potentials, J. Mol. Spectry. 46: 454 (1973).

    Article  CAS  Google Scholar 

  11. G. Henderson and G. Ewing, Infrared spectrum, structure and properties of the N2-Ar van der Waals molecule, Mol. Phys. 27: 903 (1974).

    Article  CAS  Google Scholar 

  12. A. R. W. McKellar and H. L. Welsh, Spectra of (H2)2, (D2)2 and H2-D2 van der Waals complexes, Can. J. Phys. 52: 1082 (1974).

    CAS  Google Scholar 

  13. L. A. Curtiss and J. A. Pople, Ab initio calculation of the force field of the hydrogen fluoride dimer. J. Mol. Spectry 61: 1 (1976).

    CAS  Google Scholar 

  14. D. Stogryn and J. Hirschfelder, Contribution of bound, meta-stable, and free molecules to the second virial coefficient and some properties of double molecules, J. Chem. Phys. 31: 1531 (1959).

    Article  CAS  Google Scholar 

  15. G. Mahan and M. Lapp, Bound states of alkali and noble-gas atoms, Phys. Rev. 179: 19 (1969).

    Article  CAS  Google Scholar 

  16. G. Ewing, The role of van der Waals molecules in vibrational relaxation processes, Chem. Phys. 29: 253 (1978).

    Article  CAS  Google Scholar 

  17. L. Pauling, “The Nature of the Chemical Bond”, 2nd edition, Cornell University Press, Ithaca (1948).

    Google Scholar 

  18. R. W. G. Wyckoff, “Crystal Structures”, 2nd edition, Vol. 1, Interscience, New York (1960).

    Google Scholar 

  19. A. R. W. McKellar and H. L. Welsh, Anisotropic intermolecular force effects in spectra of H2-and D2-rare gas complexes, J. Chem. Phys. 55: 595 (1971).

    Article  CAS  Google Scholar 

  20. S. E. Novick, S. J. Harris, and W. Klemperer, Determination of the structure of ArHCl, J. Chem. Phys. 59: 2273 (1973).

    Article  CAS  Google Scholar 

  21. A. M. Dunker and R. G. Gordon, Calculations on the HCl-Ar van der Waals complex, J. Chem. Phys. 64: 354 (1975).

    Article  Google Scholar 

  22. T. Dyke, B. J. Howard, and W. Klemperer, Radiofrequency and microwave spectrum of the hydrogen fluoride dimer: A nonrigid molecule, J. Chem. Phys. 56: 2442 (1972).

    Article  CAS  Google Scholar 

  23. C. A. Long and G. Ewing, Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2)2, J. Chem. Phys. 58: 4824 (1973).

    Article  CAS  Google Scholar 

  24. J. E. Grabenstetter and R. J. LeRoy, Widths (lifetimes) and energies for metastable levels of atom-diatom complexes, Chem. Phys. 42: 41 (1979).

    Article  CAS  Google Scholar 

  25. J. A. Beswick and A. Reguena, Rotational predissociation of triatomic van der Waals molecules, J. Chem. Phys. 72: 3018 (1980).

    Article  CAS  Google Scholar 

  26. R. E. Leckenby and E. J. Robbins, The observation of double molecules in gases, Proc. Roy. Soc. Lond., Ser. A 291: 389 (1966).

    Article  CAS  Google Scholar 

  27. R. E. Smalley, L. Wharton, and D. H. Levy, Molecular optical spectroscopy with supersonic beams and jets. Acc. Chem. Res. 10: 139 (1977).

    Article  CAS  Google Scholar 

  28. K. E. Johnson, L. Wharton, and D. H. Levy, The photodissociation lifetime of the van der Waals molecule I2He, J. Chem. Phys. 69: 2719 (1978).

    Article  CAS  Google Scholar 

  29. T. E. Gough, K. E. Miller, and G. Scoles, Photo-induced vibrational predissociation of the van der Waals molecule (N2O)2, J. Chem. Phys. 69: 1588 (1978).

    Article  CAS  Google Scholar 

  30. L. S. Bernstein and C. E. Kolb, Understanding the infrared continuum spectrum of the N2O dimer and other van der Waals complexes at low temperatures, J. Chem. Phys. 71: 2818 (1979).

    Article  CAS  Google Scholar 

  31. W. R. Gentry, M. Hoffbauer, and C. Giese, Photodissociation of van der Waals dimers in pulsed molecular beams, IV International Symposium on Molecular Beams, Trento, Italy (1979).

    Google Scholar 

  32. M. P. Casassa, D. S. Bomse, J. L. Beauchamp, and K. C. Janda, Infrared photochemistry of ethylene clusters, J. Chem. Phys. 72: 6805 (1980).

    Article  CAS  Google Scholar 

  33. T. Hirooka, S. L. Anderson, P. Tiedemann, B. Mahan, and Y. T. Lee, Vibrational predissociation of vibrationally excited hydrogen molecule dimers, Lawrence Berkeley Laboratory, preprint LBL-8034.

    Google Scholar 

  34. R. Schultz, A. Sudbo, Y. T. Lee, and Y. R. Shen, International Quantum Electronics Conference, Optical Society of America, Atlanta (1978).

    Google Scholar 

  35. D. A. Dixon and D. R. Herschbach, Energy transfer process involving van der Waals bonds, Ber. Bunsenges. Phys. Chem. 81: 145 (1977).

    Article  CAS  Google Scholar 

  36. C. A. Coulson and G. N. Robertson, A theory of the infrared absorption spectra of hydrogen-bonded species. I, Proc. Roy. Soc. Lond., Ser. A 337: 167 (1974).

    Article  CAS  Google Scholar 

  37. J. Beswick and J. Jortner, Vibrational predissociation of triatomic van der Waals molecules, J. Chem. Phys. 68: 2277 (1978).

    Article  CAS  Google Scholar 

  38. G. Ewing, Vibrational predissociation in hydrogen bonded complexes, J. Chem. Phys. 72: 2096 (1980).

    Article  CAS  Google Scholar 

  39. K. F. Herzfeld and T. A. Litovitz, “Absorption and Dispersion of Ultrasonic Waves”, Academic, New York (1959).

    Google Scholar 

  40. E. Bauer, Method of calculating cross sections for molecular collisions, J. Chem. Phys. 23: 1087 (1955).

    Article  CAS  Google Scholar 

  41. R. G. Gordon and J. K. Cashion, Intermolecular potentials and the infrared spectrum of the molecular complex (H2)2, J. Chem. Phys. 44: 1190 (1966).

    Article  CAS  Google Scholar 

  42. J. Beswick and J. Jortner, Intermolecular dynamics of some van der Waals dimers, J. Chem. Phys. 71: 4737 (1979).

    Article  CAS  Google Scholar 

  43. J. A. Beswick, G. Delgado-Barrio, and J. Jortner, Vibrational predissociation lifetimes of the van der Waals molecule HeI2, J. Chem. Phys. 70: 3895 (1979).

    Article  CAS  Google Scholar 

  44. G. Ewing, A guide to the lifetimes of vibrationally excited van der Waals molecules: The momentum gap, J. Chem. Phys. 71: 3143 (1979).

    Article  CAS  Google Scholar 

  45. P. Dehmer and W. Chupka, Very high resolution study of photo-absorption, photoionization, and predissociation of H2 +, J. Chem. Phys. 65: 2243 (1976).

    Article  CAS  Google Scholar 

  46. J. D. Lambert, “Vibrational and Rotational Relaxation in Gases”, Clarendon, Oxford (1977).

    Google Scholar 

  47. D. Morales and G. Ewing, Vibrational predissociation of the van der Waals molecule (N2O)2, Chem. Phys. 53: 141 (1980).

    Article  CAS  Google Scholar 

  48. M. S. Child and C. J. Ashton, General discussion, Faraday Disc. Chem. Soc. 62: 307 (1976).

    Google Scholar 

  49. F. Legay, Vibrational relaxation in matrices, in: “Chemical and Biological Applications of Lasers”, C. B. Moore, ed., Academic, New York (1977), p. 43.

    Chapter  Google Scholar 

  50. T. Gough, personal communication.

    Google Scholar 

  51. R. A. Marcus, Energy distributions in unimolecular reactions, Ber. Bunsenges. Phys. Chem. 81: 190 (1977).

    Article  CAS  Google Scholar 

  52. D. Lucas and G. Ewing, IR photodesorption of hydrogen isotopes, Amer. Chem. Soc. Las Vegas, NV (1980), paper 73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ewing, G.E. (1981). Vibrational Predissociation of van der Waals Molecules and Intermolecular Potential Energy Surfaces. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics