Skip to main content

Abstract

Non-reactive molecular scattering has been periodically reviewed from different points of view. Two volumes edited by Miller1 contain detailed chapters on theoretical approaches to the dynamics of molecular collisions. An encyclopedic theoretical guide to the experimentalist on atom-molecule collisions has recently been edited by Bernstein.2 Two reviews, by Dickinson3 and by DePriso and Rabitz,4 emphasize research areas developed by these authors. A monograph by Gianturco5 covers theoretical methods for both atomic and molecular collisions. Several contributions on inelastic collisions relating to chemical kinetics may be found in two issues of the Journal of Physical Chemistry,6,7 and also in the proceedings of a subsymposium on molecular collisions and electron scattering. Experimental work closely related to theoretical studies has been covered in reviews by Faubel and Toennies,9 by Bernstein,10 by Gentry,11 and most recently by Loesch.12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Dynamics of Molecular Collisions”, Parts A and B, W. H. Miller, ed., Plenum, New York (1976).

    Google Scholar 

  2. “Dynamics of Molecular Collisions”, Parts A and B, W. H. Miller, ed., Plenum, New York (1976).

    Google Scholar 

  3. A. S. Dickinson, Non-reactive heavy particle collision calculations, Comput. Phys. Commun. 17: 51 (1979).

    Article  CAS  Google Scholar 

  4. A. E. DePristo and H. Rabitz, Vibrational and rotational collision processes, Advan. Chem. Phys, 42: 271 (1980).

    Article  Google Scholar 

  5. F. A. Gianturco, “The Transfer of Molecular Energies by Collision”, Springer-Verlag, Berlin (1979).

    Google Scholar 

  6. “Symposium on Current Status of Kinetics of Elementary Gas Reactions”, J. Phys. Chem. 83: no. 1 (1979).

    Google Scholar 

  7. “Don Louis Bunker Memorial Issue”, J. Phys. Chem. 83: no. 8 (1979).

    Google Scholar 

  8. “Subsymposium on Electron Scattering and Molecular Collisions”, Int. J. Quantum Chem. Symp. 13 (1979).

    Google Scholar 

  9. M. Faubel and J. P. Toennies, Scattering studies of rotational and vibrational excitation of molecules, Advan. At. Mol. Phys. 13: 229 (1977).

    Article  CAS  Google Scholar 

  10. R. B. Bernstein, Introduction to atom-molecule collisions: The interdependency of theory and experiment, in reference 2, p. 1.

    Google Scholar 

  11. W. R. Gentry, Pulsed molecular beam experiments, in: “Electronic and Atomic Collisions. Invited Papers and Progress Reports”, N. Oda and K. Takayanagi, eds., North-Holland, Amsterdam (1980), p. 807.

    Google Scholar 

  12. H. Loesch, Scattering of non-spherical molecules, Advan. Chem. Phys. 42: 421 (1980).

    Article  Google Scholar 

  13. D. A. Micha, Few-body methods in atom-diatom collisions”, in: “Proceedings of the IXth International Conference on Few-Body Problems”, Nucl. Phys., in press.

    Google Scholar 

  14. T. F. George, I. H. Zimmermann, J. M. Yuan, J. R. Laing, and P. L. DeVries, A new concept in laser-assisted chemistry: The electron-field representation, Acc. Chem. Res. 10: 449 (1977).

    Article  CAS  Google Scholar 

  15. I. V. Hertel and W. Stoll, Collision experiments with laser excited atoms in crossed beams, Advan. At. Mol. Phys. 13: 133 (1977).

    Google Scholar 

  16. M. Baer, Adiabatic and diabatic representations for atom-molecule collisions: The three dimensional case, Chem. Phys. 15: 49 (1976).

    Article  CAS  Google Scholar 

  17. J. Tully, Nonadiabatic processes in molecular collisions, in reference 1, Part B, p. 217.

    Google Scholar 

  18. M. Child, Electronic excitation: Nonadiabatic transitions, in reference 2, p. 247.

    Google Scholar 

  19. B. C. Garrett and D. G. Truhlar, The coupling of electronically adiabatic states in atomic and molecular collisions, Theor. Chem.: Advan. Perspectives 6A: 215 (1981).

    Google Scholar 

  20. F. T. Smith, Diabatic and adiabatic representations for atomic collision problems, Phys. Rev. 179: 111 (1969).

    Article  Google Scholar 

  21. I. H. Zimmermann and T. F. George, Quantum mechanical study of electronic transitions in collinear atom-molecule collisions, Chem. Phys. 7: 323 (1975).

    Article  Google Scholar 

  22. J. B. Delos and W. R. Thorson, Diabatic and adibatic representations for atomic collision processes, J. Chem. Phys. 70: 1774 (1979).

    Article  CAS  Google Scholar 

  23. J. C. Tully, Semiempirical diatotnics-in-molecules potential energy surfaces, Advan. Chem. Phys. 42: 63 (1980).

    Article  Google Scholar 

  24. H. F. Schaefer III, Atom-molecule potentials, in reference 2, p. 45.

    Google Scholar 

  25. P. J. Kuntz, Semiempirical atom-molecule potentials for collision theory, in reference 2, p. 79.

    Google Scholar 

  26. R. T Pack, Van der Waals coefficients through C8 for atom-linear molecule interactions. I, CO2-noble gas systems, J. Chem. Phys. 64: 1659 (1976).

    Article  CAS  Google Scholar 

  27. G. A. Parker, R. L. Snow, and R. T Pack, Inter-molecular potential surfaces from electron gas methods, I. He-CO2 and Ar-CO2 interactions, J. Chem. Phys. 64: 166 (1976).

    Google Scholar 

  28. K. T. Tang and J. P. Toennies, A simple theoretical model for the van der Waals potential at intermediate distances II, J. Chem. Phys. 68: 5501 (1978).

    Article  CAS  Google Scholar 

  29. S. A. Adelman and J. D. Doll, Brownian motion and chemical dynamics on solid surfaces, Acc. Chem. Res. 10: 378 (1977).

    Article  CAS  Google Scholar 

  30. G. C. Schatz, A generalized Langevin equation approach to molecular collision dynamics, Chem. Phys. 31: 295 (1978).

    Article  CAS  Google Scholar 

  31. A. Nitzan, M. Shugard, and J. C. Tully, Stochastic classical trajectory approach to relaxation phenomena II, Vibrational relaxation of impurity molecules in Debye solids, J. Chem. Phys. 69: 2525 (1978).

    Article  CAS  Google Scholar 

  32. S. Augustin and H. Rabitz, Multiple time scale stochastic formulation for collision problems with more than one degree of freedom, J. Chem. Phys. 70: 1286 (1979).

    Article  CAS  Google Scholar 

  33. R. D. Levine and J. L. Kinsey, Information-theoretic approach: Application to molecular collisions, in reference 2, p. 693.

    Google Scholar 

  34. Y. Alhassid and R. Levine, Connection between the maximal entropy and the scattering theoretic analysis of collision processes, Phys. Rev. A 18: 89 (1978).

    Article  Google Scholar 

  35. P. Pechukas, Statistical approximations in collision theory, in reference 1, part B, p. 269.

    Google Scholar 

  36. M. Quack and J. Troe, Information, memory, and statistical theories of elementary chemical reactions, Ber. Bunsenges. Phys. Chem. 80: 1140 (1976).

    Article  CAS  Google Scholar 

  37. J. C. Light, Complex-mode chemical reactions: Statistical theories of bimolecular reactions, in reference 2, p. 647.

    Google Scholar 

  38. W. A. Lester, The N-coupled channel problem, in reference 1, Part A, p. 1.

    Google Scholar 

  39. D. Secrest, Rotational excitation: Quantal treatment, in reference 2, p. 265.

    Google Scholar 

  40. J. C. Light and R. B. Walker, An R-matrix approach to the solution of coupled equations for atom-molecule reactive scattering, J. Chem. Phys. 65: 4727 (1976).

    Google Scholar 

  41. P. L. DeVries and T. F. George, A new propagation method for the radial Schrödinger equation. Application to close-coupled equations, Mol. Phys., in press.

    Google Scholar 

  42. L. D. Thomas, Solution of the coupled equations of inelastic atom-molecule scattering for a single initial state, J. Chem. Phys. 70: 2979 (1979).

    Article  CAS  Google Scholar 

  43. “Algorithms and Computer Codes for Atomic and Molecular Quantum Scattering Theory”, Vol. II, L. Thomas, ed., University of California report LBL-9501, National Resource for Computation in Chemistry, Berkeley, CA (1980).

    Google Scholar 

  44. G. D. Billing, On a semiclassical approach to energy transfer in polyatomic molecules, Chem. Phys. 33: 227 (1978).

    Article  CAS  Google Scholar 

  45. K.R. Squire and C. F. Curtiss, Semiclassical series solution of the generalized phase shift atom-diatom scattering equations, J. Chem. Phys. 72: 126 (1980).

    Article  CAS  Google Scholar 

  46. K. J. McCann and M. R. Flannery, Multistate semiclassical orbital treatment of Li+-H2 and H+-H2 collisions, Chem. Phys. Lett. 60: 523 (1979).

    Article  CAS  Google Scholar 

  47. W. H. Miller and C. W. McCurdy, Classical trajectory model for electronically non-adiabatic collision phenomena, J. Chem. Phys. 69: 5163 (1978).

    Article  CAS  Google Scholar 

  48. I. C. Percival, Semiclassical theory of bound states, Advan. Chem. Phys. 36: 1 (1977).

    Article  CAS  Google Scholar 

  49. N. C. Handy, S. M. Colwell, and W. H. Miller, Semiclassical methods for vibrational energy levels of triatomic molecules, Disc. Faraday Soc. 62: 29 (1977).

    Article  CAS  Google Scholar 

  50. G. C. Schatz and T. Mulloney, Classical perturbation theory of good action-angle variables. Applications to polyatomic molecules, J. Phys. Chem. 83: 989 (1979).

    Article  CAS  Google Scholar 

  51. D. W. Noid, M. L. Koszykowski, and R. A. Marcus, Semiclassical calculation of eigenvalues for a three-dimensional system, J. Chem. Phys. 73: 391 (1980).

    Article  CAS  Google Scholar 

  52. M. J. Davis and E. J. Heller, Semiclassical Gaussian basis set method for molecular vibrational wavefunctions, J. Chem. Phys 71: 3383 (1979).

    Article  CAS  Google Scholar 

  53. R. N. Porter and L. M. Raff, Classical trajectory methods in molecular collisions, in reference 1, Part B, p. 1.

    Google Scholar 

  54. M. D. Pattengill, Rotational excitation: Classical trajectory methods, in reference 2, p. 359.

    Google Scholar 

  55. D. G. Truhlar and J. T. Muckerman, Reactive scattering cross sections: Quasiclassical and semiclassical methods, in reference 2, p. 505.

    Google Scholar 

  56. D. G. Truhlar and N. C. Blais, Legendre moment method for calculating differential cross sections from classical trajectories, J. Chem. Phys. 67: 1532 (1977).

    Article  CAS  Google Scholar 

  57. D. G. Truhlar and J. W. Duff, Classical probability matrix: Prediction of quantum-state distributions by a moment analysis of classical trajectories, Chem. Phys. Lett. 36: 551 (1975).

    Article  CAS  Google Scholar 

  58. I. Procaccia and R. D. Levine, Cross sections for rotational energy transfer: An information theoretic synthesis, J. Chem. Phys. 64: 808 (1976).

    Article  CAS  Google Scholar 

  59. W. R. Gentry, Vibrational excitation: Classical and semiclassical methods, in reference 2, p. 391.

    Google Scholar 

  60. J. W. Duff and P. Brumer, Exponentiating trajectories and statistical behavior: Three dimensional K + NaCl and H + ICl, J. Chem. Phys. 71: 2693 (1979).

    Article  CAS  Google Scholar 

  61. C. Cerjan and W. P. Reinhardt, Critical point analysis of instabilities in Hamiltonian systems: Classical mechanics of stochastic intramolecular energy transfer, J. Chem. Phys. 71: 1819 (1979).

    Article  CAS  Google Scholar 

  62. K. G. Kay, Numerical study of intramolecular vibrational energy transfer: Quantal, classical, and statistical behavior, J. Chem. Phys. 72: 5955 (1980).

    Article  CAS  Google Scholar 

  63. R. G. Gordon, Rational selection of methods for molecular scattering calculations, Disc. Faraday Soc. 55: 22 (1973).

    Article  CAS  Google Scholar 

  64. D. A. Micha, Effective Hamiltonian methods for molecular collisions, Advan. Quantum Chem. 8: 231 (1974).

    Article  CAS  Google Scholar 

  65. H. Rabitz, Effective Hamiltonians in molecular collisions, in reference 1, Part B, p. 33.

    Google Scholar 

  66. G. G. Balint-Kurti, The theory of rotationally inelastic molecular collisions, MTP Int. Rev. Science, Physical Chemistry, Series Two, 1: 285 (1975).

    Google Scholar 

  67. D. A. Micha, Optical models in molecular collision theory, in reference 1, Part A, p. 81.

    Google Scholar 

  68. V. Khare, On the lz-conserving energy sudden approximation for atom-diatom scattering, J. Chem. Phys. 68: 4631 (1978).

    Article  CAS  Google Scholar 

  69. V. Khare, On the equivalence of the space-fixed and body-fixed formulations of the jz-conserving approximation, J. Chem. Phys. 67: 3897 (1977).

    Article  CAS  Google Scholar 

  70. D. J. Kouri, Rotational excitation: Approximation methods, in reference 2, p. 301.

    Google Scholar 

  71. R. Schinke, Theoretical studies of vibrational excitation in Li+-H2 collisions at intermediate energies, Chem. Phys. 34: 65 (1978).

    Article  CAS  Google Scholar 

  72. J. M. Bowman, Rotational rainbows in inelastic atom-molecule differential cross sections, Chem. Phys. Lett. 62: 309 (1979).

    Article  CAS  Google Scholar 

  73. H. J. Korsch and R. Schinke, A uniform semiclassical sudden approximation for rotationally inelastic scattering, J. Chem. Phys. 73: 1222 (1980).

    Article  CAS  Google Scholar 

  74. V. Khare and D. J. Kouri, Time-reversal symmetry for magnetic transitions in rotationally inelastic scattering, J. Chem. Phys. 72: 2007 (1980).

    Article  CAS  Google Scholar 

  75. G. A. Parker and R. T Pack, Rotationally and vibrationally inelastic scattering in a rotational 10S approximation: Ultra-simple calculations for non-spherical molecules, J. Chem. Phys. 68: 1585 (1978).

    Article  CAS  Google Scholar 

  76. R. B. Gerber, A. T. Yinnon, Y. Shimoni, and D. J. Kouri, Rotationally inelastic molecule-surface scattering in the sudden approximation, J. Chem. Phys. 73: 4397 (1980).

    Article  CAS  Google Scholar 

  77. M. H. Alexander, Sudden theories of rotationally inelastic LiH-HCl and LiH-DCl collisions, J. Chem. Phys. 71: 1683 (1979).

    Article  CAS  Google Scholar 

  78. K. Takayanagi, Low energy ion-polar molecule collisions: The perturbed rotational state approach, J. Phys. Soc. Japan 45: 976 (1978); Low energy ion-polar molecule collisions II, University of Tokyo Institute of Space and Aeronautical Science report 77 (1979).

    Article  CAS  Google Scholar 

  79. K. Sakimoto and K. Takayanagi, Influence of the dipole interaction on low-energy ion-molecule reactions, J. Phys. Soc. Japan 48: 2076 (1980).

    Article  CAS  Google Scholar 

  80. N. A. Mullaney and D. G. Truhlar, The use of rotationally and orbitally adiabatic basis functions to calculate rotational excitation cross sections for atom-molecule collisions, Chem. Phys. 39: 91 (1979).

    Article  CAS  Google Scholar 

  81. M. Baer, G. Drolshagen, and J. P. Toennies, The adiabatic-diabatic approach to vibrational inelastic scattering. I. Theory and study of a simple collinear model, J. Chem. Phys. 73: 1690 (1980).

    Article  CAS  Google Scholar 

  82. N. M. Harvey and D. G. Truhlar, Use of vibrationally adiabatic basis functions for inelastic atom-molecule scattering, Chem. Phys. Lett. 74: 252 (1980).

    Article  CAS  Google Scholar 

  83. J. Cross, The adiabatic semiclassical perturbation theory for vibrationally inelastic scattering, J. Chem. Phys. 71: 1426 (1979).

    Article  CAS  Google Scholar 

  84. L. Eno and G. G. Balint-Kurti, The adiabatic distorted wave infinite order sudden approximation for inelastic molecular collisions, J. Chem. Phys. 71: 1447 (1979).

    Article  CAS  Google Scholar 

  85. M. H. Alexander and A. E. DePristo, An adiabatically corrected sudden approximation for rotationally inelastic collisions between polar molecules, J. Phys. Chem. 83: 1499 (1979).

    Article  CAS  Google Scholar 

  86. J. C. Tully, Nonadiabatic processes in molecular collisions, in reference 1, Part B, p. 217; M. Child, Electronic excitation: Nonadiabatic transitions, in reference 2, p. 427; K. S. Lam and T. F. George, in: “Semiclassical Methods in Molecular Scattering and Spectroscopy”, M. S. Child, ed., Reidel, Boston (1980).

    Google Scholar 

  87. F. Rebentrost and W. A. Lester, Nonadiabatic effects in the collision of F(2P) with \(H_{2}(^{1}\sum_{g}^{+})\). III. Scattering theory and coupled-channel computation, J. Chem. Phys. 67: 1302 (1977).

    Article  Google Scholar 

  88. R. E. Wyatt and R. B. Walker, Quantum mechanics of electronic-rotational energy transfer in F(2P) + H2 collisions, J. Chem. Phys. 70: 1501 (1979).

    Article  CAS  Google Scholar 

  89. H.-D. Meyer and W. H. Miller, Classical models for electronic degrees of freedom: Derivation via spin analogy and application to F* + H2 → F + H2, J. Chem. Phys. 71: 2156 (1979).

    Article  CAS  Google Scholar 

  90. P. McGuire and J. Bellum, Electronic to vibrational energy transfer in collisions of excited sodium with molecular hydrogen, J. Chem. Phys. 71: 1975 (1979).

    Article  CAS  Google Scholar 

  91. H. Taylor, Electronic to vibrational energy transfer in Na(32P) interactions with simple molecules, Chem. Phys. Lett. 64: 17 (1979).

    Article  CAS  Google Scholar 

  92. C. Bottcher, Excited state potentials and their applications, Advan. Chem. Phys. 42: 169 (1980).

    Article  Google Scholar 

  93. M. S. Child and M. Baer, A model for reactive non-adiabatic transitions: Comparison between exact numerical and approximate analytical results, J. Chem. Phys., in press.

    Google Scholar 

  94. S. Stolte and J. Reuss, Elastic scattering cross sections: Non-central potentials, in reference 2, p. 201.

    Google Scholar 

  95. U. Buck, V. Khare, and M. Kick, Anisotropic potentials from rainbow scattering of sodium atoms by tetrahedral molecules, Mol. Phys. 35: 65 (1978).

    Article  CAS  Google Scholar 

  96. W. Schepper, U. Ross, and D. Beck, Anisotropy of the repulsive intermolecular potential from rotationally inelastic scattering, Z. Physik A 290: 131 (1979).

    Article  CAS  Google Scholar 

  97. D. Beck, U. Ross, and W. Schepper, Isotope shift in the bulge effect of molecular scattering, Phys. Rev. A 19: 2173 (1979).

    Article  CAS  Google Scholar 

  98. U. Buck, F. Huisken, J. Schleusener, and J. Schafer, Differential cross sections for the j = 0 → 1 rotational excitation in the HD-Ne collisions and their relevance to the anisotropic interaction, J. Chem. Phys. 72: 1512 (1980).

    Article  CAS  Google Scholar 

  99. R. G. Gerber, V. Buck, and U. Buck, Direct inversion method for obtaining anisotropic potentials from rotationally inelastic and elastic cross sections, J. Chem. Phys. 72: 3596 (1980).

    Article  CAS  Google Scholar 

  100. J.-T. Hwang and H. Rabitz, The Green’s function method of sensitivity analysis in quantum dynamics, J. Chem. Phys. 70: 4609 (1979).

    Article  CAS  Google Scholar 

  101. L. Eno and H. Rabitz, Generalized sensitivity analysis in quantum collision theory, J. Chem. Phys. 71: 4824 (1979).

    Article  CAS  Google Scholar 

  102. L. Eno and H. Rabitz, Sensitivity analysis of rotational energy transfer processes to the inter-molecular potential, J. Chem. Phys. 72: 2314 (1980).

    Article  CAS  Google Scholar 

  103. E. O. Alt, P. Grassberger, and W. Sandhas, Reduction of the three-particle collision problem to multichannel two-particle Lippmann-Schwinger equations, Nucl. Phys. B2: 167 (1967).

    Article  Google Scholar 

  104. D. A. Micha, Role of molecular momentum distributions in impulsive collisions. Ber. Bunsenges. Phys. Chem. 81: 162 (1977).

    Article  CAS  Google Scholar 

  105. L. H. Beard and D. A. Micha, Collision dynamics of three interacting atoms: Energy transfer and dissociation in collinear motions, J. Chem. Phys. 73: 1193 (1980).

    Article  CAS  Google Scholar 

  106. K. C. Kulander, Collision induced dissociation in collinear H + H2: Quantum mechanical probabilities using the time-dependent wavepacket approach, J. Chem. Phys. 69: 5064 (1978).

    Article  CAS  Google Scholar 

  107. J. C. Gray, G. A. Fraser, D. G. Truhlar, and K. C. Kulander, Quasiclassical trajectory and quantal wavepacket calculations for vibrational energy transfer at energies above the dissociation threshold, J. Chem. Phys. 73: 5726 (1980).

    Article  CAS  Google Scholar 

  108. J. A. Kaye and A. Kuppermann, Quantum mechanical collision-induced dissociation calculations with hyperspherical coordinates, J. Chem. Phys., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Micha, D.A. (1981). Overview of Non-Reactive Scattering. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics