Theoretical Studies of Reactions at Transition Metal Centers

  • Anthony K. Rappé
  • William A. GoddardIII


For normal organic molecules, systematic studies in recent years have established the level of theoretical description* required to obtain reliable geometries,1-3 relative energies of isomers,3-5 excitation energies, and even bond energies.6-8 Considerations here are the type of basis set9 (minimal basis or STO-3G versus double zeta or 4-31G versus inclusion of polarization functions) and the levels of electron correlation (generalized valence bond, configuration interaction, or many-body perturbation theory) or lack of correlation (Hartree-Fock). Some of these considerations are outlined in other chapters in this book. However, for molecules containing transition metals there is yet much uncertainty concerning these matters.


Electron Correlation Configuration Interaction Olefin Metathesis Double Zeta Electronic Structure Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Bell, The effects of basis set and configuration interaction on the predicted geometries of AH2 molecules, J. (Them. Phys. 68: 3014 (1978).Google Scholar
  2. 2.
    D. Cremer, Theoretical determination of molecular structure and conformation. I. The role of basis set and correlation effects in calculations on hydrogen peroxide, J. Chem. Phys. 69: 4440 (1978).CrossRefGoogle Scholar
  3. 3.
    C. A. Parsons and C. E. Dykstra, Electron correlation and basis set effects in unimolecular reactions. A study of the model rearrangement system N2H2, J. Chem. Phys. 71: 3025 (1979).CrossRefGoogle Scholar
  4. 4.
    J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Electron correlation theories and their application to the study of simple reaction potential surfaces, Int. J. Quantum Chem. 14: 545 (1978).CrossRefGoogle Scholar
  5. 5.
    C. J. Casewit and W. A. Goddard III, Thermochemistry of transdiimide and 1,1-diazne. Ab initio studies, J. Amer. Chem. Soc. 102: 4057 (1980).CrossRefGoogle Scholar
  6. 6.
    J. H. Davis, W. A. Goddard III, and L. B. Harding, Theoretical studies of the low-lying states of vinylidene, J. Amer. Chem. Soc. 99: 2919 (1977).CrossRefGoogle Scholar
  7. 7.
    L. B. Harding and W. A. Goddard III, Intermediates in the chemiluminescent reaction of singlet oxygen with ethylene. Ab initio studies, J. Amer. Chem. Soc. 99: 4520 (1977).CrossRefGoogle Scholar
  8. 8.
    M. L. Steigerwald and W. A. Goddard III, unpublished results; R. A. Bair and W. A. Goddard III, unpublished results.Google Scholar
  9. 9.
    T. H. Dunning, Jr. and P. J. Hay, Gaussian basis sets for molecular calculations, in: “Methods of Electronic Structure Theory”, H. F. Schaefer III, ed., Plenum, New York (1977), p. 1.Google Scholar
  10. 10.
    E. L. Hehler and C. H. Paul, Small Gaussian basis sets for Ab initio calculations on large molecules, Chem. Phys. Lett. 63: 145 (1979).CrossRefGoogle Scholar
  11. H. Tatewaki and S. Huzinaga, A systematic preparation of new contracted Gaussian-type orbital set. 1. Transition metal atoms from Sc to Zn, J. Chem. Phys. 71: 4339 (1979).CrossRefGoogle Scholar
  12. D. F. Feller and K. Reudenberg, Systematic approach to extended even-tempered orbital bases for atomic and molecular calculations, Theoret. Chim. Acta 52: 231 (1979).CrossRefGoogle Scholar
  13. M. W. Schmidt, and K. Ruedenberg, Effective convergence to complete orbital bases and to the atomic Hartree-Fock limit through systematic sequences of Gaussian primitives, J. Chem. Phys. 71: 395 (1979).Google Scholar
  14. 11.(a)
    T. A. Smedley, A. K. Rappé, and W. A. Goddard III, Flexible D basis sets for Sc through Cu, J. Phys. Chem., submitted for publication; (b) A. K. Rappé and W. A. Goddard III, Flexible double zeta Gaussian basis sets for H-Ba, manuscript in preparation.Google Scholar
  15. 12.
    P. J. Hay, Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms, J. Chem. Phys. 66: 4377 (1977).CrossRefGoogle Scholar
  16. 13.
    B. R. Brooks and H. F. Schaefer III, A model transition metal-carbene system MnCH2, Mol. Phys. 34: 193 (1977).CrossRefGoogle Scholar
  17. 14.
    A. K. Rappe, T. A. Smedley, and W. A. Goddard III, The shape and Hamiltonian consistent (SHC) effective potentials, J. Phys. Chem., submitted for publication.Google Scholar
  18. 15.
    F. W. Bobrowicz and W. A. Goddard III, The self-consistent-field equations for generalized valence bond and open-shell Hartree-Fock wavefunctions, in: “Methods of Electronic Structure Theory”, H. F. Schaefer III, ed., Plenum, New York (1979), p. 79.Google Scholar
  19. 16.
    I. Shavitt, The method of configuration interaction, in: “Methods of Electronic Structure Theory”, H. F. Shaefer III, ed., Plenum, New York (1977), p. 189.CrossRefGoogle Scholar
  20. 17.
    For a review on the HF calculation of the energetics of “isodesmic” reactions, see W. J. Hehre, Ab initio molecular orbital theory, Acc. Chem. Res. 9: 399 (1976).CrossRefGoogle Scholar
  21. 18.
    P. Schlodder, J. A. Ibers, M. Lenarda, and M. Graziani, Structure and mechanism of formation of the metallooxacyclobutane complex Pt[C2(CN)4O] [As (C6H5) 3]2, the product of the reaction between tetracyanooxirane and Pt[As(C6H5)3]4, J. Amer. Chem. Soc. 96: 6893 (1974).CrossRefGoogle Scholar
  22. R. H. Grubbs and A. Miyashita, Metallacycles in organotransition metal chemistry, Fundamental Research in Homogeneous Catalysis 2: 207 (1977).Google Scholar
  23. R. H. Grubbs and A. Miyashita, The relationship between metallacyclopentanes and bis-olefin-metal complexes, J. Amer. Chem. Soc. 100: 1300 (1978).CrossRefGoogle Scholar
  24. S. J. McLain and R. R. Schrock, Selective olefin dimerization via tantallocyclopentane complexes, J. Amer. Chem. Soc. 100: 1315 (1978); I. M. Al-Najjar, M. Greene, S. J. S. Kerrison, and P. J. Sadler, Platinum complex containing a four-membered ring, J. Chem. Soc. Chem. Commun. 311 (1979).CrossRefGoogle Scholar
  25. J. L. Harrison and Y. Chauvin, Catalyse de transformation des oléfines par les complexes du tungstène. II. Télémerisation de oléfines en présence d’oléfines acycliques, Makromol. Chem. 141: 161 (1970).Google Scholar
  26. R. H. Grubbs, The olefin metathesis reaction, Prof. Inorg. Chem. 24: 1 (1978).CrossRefGoogle Scholar
  27. N. Calderon, J. P. Lawrence, and E. A. Ofstead, Olefin metathesis, Advan. Organomet. Chem. 17: 449 (1979).CrossRefGoogle Scholar
  28. 19.
    For a preliminary account of this work, see A. K. Rappé and W. A. Goddard, Bivalent spectator oxo bonds in metathesis and epoxidation of alkenes, Nature 285: 311 (1980).CrossRefGoogle Scholar
  29. A. K. Rappé and W. A. Goddard, Mechansim of metathesis and epoxidation in Cr and Mo complexes containing oxo bonds, J. Amer. Chem. Soc. 102: 5114 (1980).CrossRefGoogle Scholar
  30. 20.
    A. K. Rappé, Ph.D. thesis, California Institute of Technology, Pasadena, 1980.Google Scholar
  31. 21.
    J. M. Basset, G. Coudurier, R. Mutin, H. Proliaud, and Y. Trambouze, Effect of oxygen on metathesis of cis-2-pentene by a binary catalyst system of W(CO)5P(C6H5)3 and (C2H5)AlCl2, J. Catal. 34: 196 (1974).CrossRefGoogle Scholar
  32. 22.
    M. T. Mocella, R. Rovner, and E. L. Muetterties, Mechanism of the olefin metathesis reaction. 4. Catalyst precursors in tungsten(VI) based systems, J. Amer. Chem. Soc. 98: 1689 (1976).Google Scholar
  33. 23.
    J. R. M. Kress, M. J. Russell, M. G. Wesolek, and J. A. Osborn, Tungsten (VI) and molybdenum (VI) oxo-alkyl species. Their role in the metathesis of olefins, J. Chem. Soc. Chem. Commun. 431 (1980).Google Scholar
  34. 24.
    R. A. Walton, Halides and oxyhalides of the early transition series and their stability and reactivity in nonaqueous media, Prog. Inorg. Chem. 16: 1 (1972).CrossRefGoogle Scholar
  35. 25.
    R. R. Schrock, Alkylidene complexes of niobium and tantalum, Acc. Chem. Res. 12: 98 (1979).CrossRefGoogle Scholar
  36. 26.
    R. Schrock, S. Rocklage, J. Wengrovious, G. Rupprecht, and J. Fellmann, Preparation and characterization of active niobium, tantalum, and tungsten metathesis catalysts, J. Mol. Catal. 8: 73 (1980).CrossRefGoogle Scholar
  37. J. H. Wengrovious, R. R. Schrock, M. R. Churchill, J. R. Missert, and W. J. Youngs, Tungsten-oxo alkylidene complexes as olefin metathesis catalysts and the crystal structure of W(O)(CHCMe3)(PEt3)Cl2, J. Amer. Chem. Soc. 102: 4515 (1980).CrossRefGoogle Scholar
  38. 27.
    J. Fathiakalajaji and G. B. Willis, Effects of ammonia upon propylene metathesis over a WO3-SiO2 catalyst, J. Mol. Catal. 8: 127 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Anthony K. Rappé
    • 1
  • William A. GoddardIII
    • 1
  1. 1.Arthur Amos Noyes Laboratory of Chemical PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations