Advertisement

Laser-Induced Nonadiabatic Collision Processes

  • A. E. Orel

Abstract

The subject of laser interactions with molecular processes has generated great interest both experimentally and theoretically. This interest has been enhanced by the possibilities for laser-catalyzed chemical reactions, isotopic selectivity, and perhaps even the determination of the transition state structure. The degree of success in this area has been limited by the extreme difficulties of the experiments involved and also the lack of simple and qualitatively accurate theoretical models that can be applied to a wide range of systems.1–18

Keywords

Potential Energy Surface Laser Frequency Laser Field Reaction Probability Translational Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. M. Kroll and K. M. Watson, Inelastic atom-atom scattering within an intense laser beam, Phys. Rev. A 13: 1018 (1976).CrossRefGoogle Scholar
  2. 2.
    M. Yuan, T. F. George, and F. J. McLafferty, Theory of absorption and emission of radiation in molecular collisions, Chem. Phys. Lett. 40: 163 (1979).CrossRefGoogle Scholar
  3. 3.
    J. M. Yuan and T. F. George, Semiclassical study of reactive scattering in a laser field: F + H2 + hω (1.06 μm) system, J. Chem. Phys. 70: 990 (1979) and other earlier work cited therein.CrossRefGoogle Scholar
  4. 4.
    A. M. F. Lau, Radiative transitions in atom-atom scattering in intense laser fields, Phys. Rev. A 13: 139 (1976).CrossRefGoogle Scholar
  5. 5.
    A. M. F. Lau, Laser-induced molecular predissociation by stimulated single-photon or multiphoton absorption or emission of infrared photons, Phys. Rev. A 19: 1117 (1979) and other earlier work cited therein.CrossRefGoogle Scholar
  6. 6.
    J. C. Light and A. Szöke, Four-state model of optical collisions: Sr + Ar, Phys. Rev. A 18: 1363 (1978).CrossRefGoogle Scholar
  7. 7.
    J. C. Light and A. Altenberger-Siczek, Laser-collision induced chemical reactions: Collinear exchange reaction model on two electronic surfaces, J. Chem. Phys. 70: 4108 (1979).CrossRefGoogle Scholar
  8. 8.
    W. H. Miller, A classical/semiclassical theory for the interaction of infrared radiation with molecular systems, J. Chem. Phys. 69: 2188 (1978).CrossRefGoogle Scholar
  9. 9.
    A. E. Orel and W. H. Miller, Infrared laser induced chemical reactions, Chem. Phys. Lett. 57: 362 (1978).CrossRefGoogle Scholar
  10. 10.
    A. E. Orel and W. H. Miller, Infrared laser enhancement of chemical reactions via collision induced absorption, J. Chem. Phys. 70: 4393 (1979).CrossRefGoogle Scholar
  11. 11.
    A. E. Orel and W. H. Miller, Collision induced absorption spectra for gas phase chemical reactions in a high power IR laser field, J. Chem. Phys. 72: 5139 (1980).CrossRefGoogle Scholar
  12. 12.
    A. E. Orel and W. H. Miller, Classical model for laser-induced non-adiabatic collision processes, J. Chem. Phys. 73: 241 (1980).CrossRefGoogle Scholar
  13. 13.
    W. R. Green, J. Lukasik, J. R. Willison, M. D. Wright, J. F. Young, and S. E. Harris, Measurement of large cross sections for laser-induced collisions, Phys. Rev. Lett. 42: 970 (1979) and earlier work cited therein.CrossRefGoogle Scholar
  14. 14.
    V. S. Dubov, L. I. Gudzerko, L. V. Gurvich, and S. I. Iakovlenko, Experimental detection of chemical radiative collisions, Chem. Phys. Lett. 53: 170 (1978) and earlier work cited therein.CrossRefGoogle Scholar
  15. 15.
    A. v. Hellfeld, J. Caddick, and J. Weiner, Observation of laser-induced penning and associative ionization in Li-Li collisions, Phys. Rev. Lett. 40: 1369 (1978).CrossRefGoogle Scholar
  16. 16.
    Ph. Cahuzac and P. E. Toschek, Observation of light-induced collisional energy transfer, Phys. Rev. Lett. 40: 1087 (1978).CrossRefGoogle Scholar
  17. 17.
    P. Hering, P. R. Brooks, R. F. Curl, Jr., R. S. Judson, and R. S. Lowe, Chemiluminescent reaction channel opened by photon absorption during collision, Phys. Rev. Lett. 44: 687 (1980).CrossRefGoogle Scholar
  18. 18.
    K. C. Kulander and A. E. Orel, to be published.Google Scholar
  19. 19.
    W. H. Miller and C. W. McCurdy, Classical trajectory model for electronically non-adiabatic collision phenomena: A classical analog for electronic degrees of freedom, J. Chem. Phys. 69: 5163 (1978).CrossRefGoogle Scholar
  20. 20.
    C. W. McCurdy, H. D. Meyer, and W. H. Miller, Classical model for electronic degrees of freedom in nonadiabatic collision processes: Pseudopotential analysis and calculations for F(2P1/2) + H+, Xe → F(2P3/2) + H+, Xe, J. Chem. Phys. 70: 3177 (1979).CrossRefGoogle Scholar
  21. 21.
    H. D, Meyer and W. H. Miller, A classical analog for electronic degrees of freedom in nonadiabatic collision processes, J. Chem. Phys. 70: 3214 (1979).CrossRefGoogle Scholar
  22. 22.
    H. D. Meyer and W. H. Miller, Classical models for electronic degrees of freedom via spin analogy and application to F* + H2 → F + H2, J. Chem. Phys. 71: 2156 (1979).CrossRefGoogle Scholar
  23. 23.
    See, for example, R. N. Porter and L. M. Raff, Classical trajectory methods in molecular collisions, in: “Dynamics of Molecular Collisions, Part B”, W. H. Miller, ed., Plenum, New York (1976), p. 1.CrossRefGoogle Scholar
  24. 24.
    R. N. Porter and M. Karplus, Potential energy surface for H3, J. Chem. Phys. 40: 1105 (1964).CrossRefGoogle Scholar
  25. 25.
    R. E. Weston, Jr., H3 activated complex and the rate of reaction of hydrogen atoms with hydrogen molecules, J. Chem. Phys. 31: 892 (1959).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • A. E. Orel
    • 1
  1. 1.Department of Chemistry and Materials and Molecular Research Division, Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations