Potential Energy Surfaces for the H + HX (X = F, C1, Br, I) Abstraction and Exchange Reaction Channels Calculated by the Modified DIM Method

  • M. Baer
  • I. Last (Lyast)

Abstract

The potential energy surfaces of triatomic hydrides XH2, where X is a halogen atom, are of considerable interest in theoretical investigations of the abstraction and exchange reactions1–4
$$H+HX\rightarrow H_{2}+X$$
(1)
$$H{}'+HX\rightarrow H{}'X+H$$
(2)

Keywords

Entropy Fluoride Chlorine Hydride Fluorine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Parr and D. G. Truhlar, Potential energy surfaces for atom transfer reactions involving hydrogens and halogens, J. Phys. Chem. 75: 1844 (1971).CrossRefGoogle Scholar
  2. 2.
    R. N. Porter, L. B. Sims, D. L. Thompson, and L. M. Raff, Classical dynamical investigations of reaction mechanism in three-body hydrogen-halogen systems, J. Chem. Phys, 58: 2855 (1973).CrossRefGoogle Scholar
  3. 3.
    N. Agmon and R. D. Levine, Energy, entropy and the reaction coordinate: Thermodynamic-like relations in chemical kinetics, Chem. Phys. Lett. 52: 197 (1977).CrossRefGoogle Scholar
  4. 4.
    P. Botschwina and W. Meyer, A PNO-CEPA calculation of the barrier height for the collinear atom exchange reaction H + BrH → HBr + H, J. Chem. Phys. 67: 2390 (1977).CrossRefGoogle Scholar
  5. 5.
    C. F. Bender, P. K. Pearson, S. V. O’Neil, and H. F. Schaefer III, Potential energy surface including electron correlation for the chemical F + H2 → FH + H. I. Preliminary surface, J. Chem. Phys. 56: 4626 (1972).CrossRefGoogle Scholar
  6. 6.
    C. F. Bender, B. J. Garrison, and H. F. Schaefer III, A classical test of semiempirical FH2 potential energy surfaces: The barrier height for H + HF → HF + H, J. Chem. Phys. 62: 1188 (1975).CrossRefGoogle Scholar
  7. 7.
    P. Botschwina and W. Meyer, PNO-CEPA calculation of collinear potential energy barriers for thermoneutral exchange reactions, Chem. Phys. 20: 43 (1977).CrossRefGoogle Scholar
  8. 8.
    P. Botschwina and W. Meyer, A PNO-CEPA calculation of the barrier height for the collinear atom exchange reaction Cl + HCl → ClH + Cl, Chem. Phys. Lett. 44: 449 (1976).CrossRefGoogle Scholar
  9. 9.
    T. H. Dunning, Jr., The barrier for abstraction and exchange in H + HCl, J. Chem. Phys. 66: 2752 (1977).CrossRefGoogle Scholar
  10. 10.
    W. R. Wadt and N. W. Winter, Accurate characterization of the transition state geometry for the H + HF → H + HF reaction, J. Chem. Phys. 67: 3068 (1977).CrossRefGoogle Scholar
  11. 11.
    F. London, Quantenmechanische Deuting des Vorgangs der Aktivierung, Z. Elektrochem. 35: 552 (1929).Google Scholar
  12. 12.
    S. Sato, A new method of drawing the potential energy surface, Bull. Chem. Soc. Jap. 28: 450 (1955).CrossRefGoogle Scholar
  13. 13.
    A. A. Westenberg and N. de Haas, Atom-molecule kinetics using ESR detection. IV. Results for Cl + H2 ⇄ HCl + H in both directions, J. Chem. Phys. 48: 4405 (1968).CrossRefGoogle Scholar
  14. 14.
    I. W. Smith and P. W. Wood, Vibrational relaxation in atom-exchange reactions, Mol. Phys. 25: 441 (1973).CrossRefGoogle Scholar
  15. 15.
    R. L. Wilkins, Vibrational relaxation of HCl by H and Cl atoms, J. Chem. Phys. 63: 534 (1975).CrossRefGoogle Scholar
  16. 16.
    R. L. Wilkins, Reaction rates and energy distributions among reaction products for the H + Cl2 and Cl + H2 reactions, J. Chem. Phys. 63: 2963 (1975).CrossRefGoogle Scholar
  17. 17.
    F. O. Ellison, A method of diatomics in molecules. I. General theory and application to H2O, J. Amer. Chem. Soc. 85: 3540 (1963).CrossRefGoogle Scholar
  18. 18.
    P. J. Kuntz, Use of the method of diatomics-in-molecules in fitting Ab initio potential energy surfaces, Chem. Phys. Lett. 16: 581 (1972).CrossRefGoogle Scholar
  19. 19.
    P. J. Kuntz and A. C. Roach, Ion-molecule reactions of the rare gases with hydrogen, J. Chem. Soc. Faraday Trans. II 68: 259 (1972).CrossRefGoogle Scholar
  20. 20.
    J. C. Tully, Diatomics-in-molecules potential energy surfaces. I. First-row triatomic hydrides, J. Chem. Phys. 58: 1396 (1973).CrossRefGoogle Scholar
  21. 21.
    D. L. Miller and R. E. Wyatt, Comparison of diatomics-in-molecules and simple valence-bond potential surfaces for FH2, Chem. Phys. Lett. 38: 410 (1976).CrossRefGoogle Scholar
  22. 22.
    C. W. Eaker and C. A. Parr, Optimization of diatomic state mixing in diatomics-in-molecules theory, J. Chem. Phys. 64: 1322 (1976).CrossRefGoogle Scholar
  23. 23.
    M. B. Faist and J. T. Muckerman, On the valence bond diatomics-in-molecules method. I. A projection operator reformulation, J. Chem. Phys. 71: 225 (1979).CrossRefGoogle Scholar
  24. 24.
    M. B. Faist and J. T. Muckerman, On the valence bond diatomics-in-molecules method. II. Application to the valence state of FH2, J. Chem. Phys. 71: 233 (1979).CrossRefGoogle Scholar
  25. 25.
    J. T. Muckerman, Monte Carlo calculations of energy partitioning and isotope effects in reactions of fluorine atoms with H2, HD, D2, J. Chem. Phys. 54: 1155 (1971).CrossRefGoogle Scholar
  26. 26.
    J. T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules, J. Chem. Phys. 56: 2997 (1972).CrossRefGoogle Scholar
  27. 27.
    A. Persky and M. Baer, Exact quantum mechanical study of kinetic isotope effects in the collinear reaction Cl + H2 → HCl + H, J. Chem. Phys. 60: 133 (1974).CrossRefGoogle Scholar
  28. 28.
    D. L. Thompson, H. H. Suzukawa, Jr., and L. M. Raff, A paradox: The thermal rate coefficient for the H + DCl → HCl + D exchange reaction, J. Chem. Phys, 62: 4727 (1975).CrossRefGoogle Scholar
  29. 29.
    R. L. Jaffe, K. Morokuma, and T. F. George, Ab initio and semi-empirical study of multiple surfaces and their analytical continuation for collinear F + H2 → FH + H, J. Chem. Phys. 63: 3417 (1975).CrossRefGoogle Scholar
  30. 30.
    I. Last and M. Baer, Semiempirical potential energy surfaces for the reactions H + HCl → H2 + Cl and H + HCl + HCl + H, Chem. Phys. Lett. 73: 514 (1980).CrossRefGoogle Scholar
  31. 31.
    I. Last and M. Baer, Semiempirical three-dimensional potential energy surfaces suitable for both reaction channels of the XH2 system (X = F, Cl), J. Chem. Phys., in press.Google Scholar
  32. 32.
    R. E. Weston, Jr., A survey of reactions involving H′, H″, and Cl atoms, J. Phys. Chem. 83: 61 (1979).CrossRefGoogle Scholar
  33. 33.
    I. Last, Limitations of the diatomics-in-molecules method, Chem. Phys., in press.Google Scholar
  34. 34.
    P. J. Kuntz, Interaction potentials II: Semiempirical atom-molecule potentials for collision theory, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 79.CrossRefGoogle Scholar
  35. 35.
    J. C. Tully, Diatomics-in-molecules, in: “Semiempirical Methods of Electronic Structure Calculations, Part A: Techniques”, G. A. Segal, ed., Plenum, New York (1977), p. 173.CrossRefGoogle Scholar
  36. 36.
    R. N. Porter and M. Karplus, Potential energy surface for H3, J. Chem. Phys. 40: 1105 (1964).CrossRefGoogle Scholar
  37. 37.
    I. T. Lyast, The antisymmetrized product of weak nonorthogonal geminals, Int. J. Quantum Chem. 13: 83 (1978).CrossRefGoogle Scholar
  38. 38.
    R. S. Mulliken, Quelques aspects de la theorie des orbitales moleculaires, J. Chim. Phys. 46: 497 (1949).Google Scholar
  39. 39.
    T. H. Dunning, Jr., The low-lying states of hydrogen fluoride: Potential energy curves for the X1+, 3+, 3∏, and 1∏ states, J. Chem. Phys. 65: 3854 (1976).CrossRefGoogle Scholar
  40. 40.
    P. A. Whitlock and J. T. Muckerman, Comparison of quasiclassical trajectory and classical S-matrix treatments of collinear collisions of F and D2, J. Chem. Phys, 61: 4618 (1974).CrossRefGoogle Scholar
  41. 41.
    J. F. Bott, A shock tube study of the reaction of H atom with DF, J. Chem, Phys. 65: 1976 (1976).Google Scholar
  42. 42.
    See, however, F. E. Bartoszek, D. M. Manos, and J. C. Polanyi, Effect of changing reagent energy. X. Vibrational threshold energies for alternative reaction paths HF(v) + D → F + HD and → H + DF, J. Chem. Phys. 69: 933 (1978).CrossRefGoogle Scholar
  43. 43.
    A. Persky, Quasiclassical trajectory studies of the chlorine-hydrogen system, J. Chem. Phys. 66: 2932 (1977).CrossRefGoogle Scholar
  44. 44.
    H. Endo and G. P. Glass, Reactions of atomic hydrogen and deuterium with HBr and DBr, J. Phys. Chem. 80: 1519 (1976).CrossRefGoogle Scholar
  45. 45.
    H. Endo and G. P. Glass, The exchange reaction D + HCl → DCl + H, Chem. Phys. Lett. 44: 180 (1976).CrossRefGoogle Scholar
  46. 46.
    G. O. Wood, Isotope exchange vs. abstraction for H + DCl, J. Chem. Phys. 56: 1723 (1972).CrossRefGoogle Scholar
  47. 47.
    F. S. Klein and I. Veltman, Branching ratios for the H + DCl and D + HCl reaction systems, J. Chem. Soc. Faraday Trans. II 74: 17 (1978).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • M. Baer
    • 1
    • 2
  • I. Last (Lyast)
    • 1
  1. 1.Soreq Nuclear Research CentreYavneIsrael
  2. 2.Department of Chemical PhysicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations