Advertisement

Effect of Potential Energy Surface Properties on Unimolecular Dynamics for a Model Alkyl Radical Dissociation Reaction: H-C-C → H + C=C

  • William L. Hase
  • Ralph J. Wolf

Abstract

At the present very little is known about the effect of various potential energy surface properties on unimoleeular reaction dynamics. This is in sharp contrast to the current state of affairs for direct triatomic A + BC → AB + C absorption reactions.1-4 Detailed microscopic dynamical information such as reactive cross sections, energy partitioning In the reaction products, and velocity and angular momenta scattering angles has been gleaned for these reactions from molecular beam, infrared chemiluminescence, and laser fluorescence experiments. This data is of sufficient detail that it is possible to use classical trajectory calculations to resolve and characterize many important potential energy surface features. Initial attempts have also been made to elucidate important potential energy surface properties for complex polyatomic bimolecular reactions.5–9

Keywords

Potential Energy Surface Orbital Angular Momentum Lifetime Distribution Minimum Energy Path Random Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Polanyi, Some concepts in reaction dynamics, Acc. Chem. Res. 5: 161 (1971).CrossRefGoogle Scholar
  2. 2.
    D. L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10: 287 (1971).Google Scholar
  3. 3.
    J. C. Polanyi and J. L. Schreiber, The dynamics of bimolecular reactions, in: “Physical Chemistry: An Advanced Treatise”, Vol. VI-A, “Kinetics of Gas Reactions”, W. Jost, ed., Academic, New York (1974), p. 383.Google Scholar
  4. 4.
    J. W. Duff and D. G. Truhlar, Effect of curvature of the reaction path on dynamic effects in endothermic chemical reactions and product energies in exothermic reaction, J. Chem. Phys. 62: 2477 (1975).CrossRefGoogle Scholar
  5. 5.
    D. L. Bunker and E. A. Goring-Simpson, Alkali-methyl iodide reactions, Faraday Disc. Chem. Soc. 55: 93 (1973).CrossRefGoogle Scholar
  6. 6.
    L. M. Raff, Theoretical investigations of the reaction dynamics of polyatomic systems: Chemistry of the hot atom (T* + CH4) and (T* + CD4) systems, J. Chem. Phys. 60: 2220 (1974).CrossRefGoogle Scholar
  7. 7.
    D. L. Bunker, Simple kinetic models from Arrhenius to the computer, Acc. Chem. Res. 7: 195 (1974).CrossRefGoogle Scholar
  8. 8.
    T. Valencich and D. L. Bunker, Trajectory studies of hot atom reactions. II. An unrestricted potential for CH5, J. Chem. Phys. 61: 21 (1974).CrossRefGoogle Scholar
  9. 9.
    S. Chapman and D. L. Bunker, An exploratory study of reactant vibrational effects in CH3 + H2 and its isotopic variants, J. Chem. Phys. 62: 2890 (1975).CrossRefGoogle Scholar
  10. 10.
    I. Oref and B. S. Rabinovitch, Do highly excited reactive polyatomic molecules behave ergodically, Acc. Chem. Res. 12: 166 (1979).CrossRefGoogle Scholar
  11. 11.
    J. P. Robinson and K. A. Holbrook, “Unimolecular Reactions”, Wiley Interscience, New York (1972).Google Scholar
  12. 12.
    W. Forst, “Theory of Unimolecular Reactions”, Academic, New York (1973).Google Scholar
  13. 13.
    W. L. Hase, Dynamics of unimolecular reactions, in: “Dynamics of Molecular Collisions, Part B”, W. H. Miller, ed., Plenum, New York (1976), p. 121.CrossRefGoogle Scholar
  14. 14.
    W. L. Hase, The criterion of minimum state density in unimolecular rate theory. An application to ethane dissociation, J. Chem. Phys. 64: 2442 (1976).CrossRefGoogle Scholar
  15. 15.
    D. L. Bunker and W. L. Hase, On non-RRKM unimolecular kinetics: Molecules in general, and CH3NC in particular, J. Chem. Phys. 59: 4621 (1973), 69, 4711(E) (1978).CrossRefGoogle Scholar
  16. 16.
    R. A. Marcus, comment made at the General Discussion on Molecular Beam Scattering, Faraday Disc. Chem. Soc. 55: 379 (1973).Google Scholar
  17. 17.
    J. D. McDonald and R. A. Marcus, Classical trajectory study of internal energy distributions in unimolecular processes, J. Chem. Phys. 65: 2180 (1976).CrossRefGoogle Scholar
  18. 18.
    R. V. Reddy and M. J. Berry, A nonstatistical unimolecular chemical reaction: Isomerization of state-selected allyl iso-cyanide, Chem. Phys. Lett. 66: 223 (1979).CrossRefGoogle Scholar
  19. 19.
    T. F. Deutsch and S. R. J. Brueck, v3 mode absorption behavior of CO2 laser excited SF3, J. Chem. Phys. 70: 2063 (1979).CrossRefGoogle Scholar
  20. 20.
    J. M. Farrar and Y. T. Lee, The question of energy randomization in the decomposition of chemically activated C2H4F, J. Chem. Phys. 65: 1414 (1976).CrossRefGoogle Scholar
  21. 21.
    J. H. Lee, J. V. Michael, W. A. Payne, and L. J. Stief, Absolute rate of the reaction of atomic hydrogen with ethylene from 198 to 320 K at high pressure, J. Chem. Phys. 68: 1817 (1978).CrossRefGoogle Scholar
  22. 22.
    M. G. Moss, M. D. Ensminger, G. M. Stewart, D. Mordaunt, and J. D. McDonald, Infrared chemiluminescence investigation of the reaction of halogen atoms with deuterated ethylene and benzene derivatives, J. Chem. Phys. 73: 1256 (1980).CrossRefGoogle Scholar
  23. 23.
    R. J. Wolf and W. L. Hase, Trajectory studies of model H-C-C → H + C=C dissociation. I. Random vibrational excitation, J. Chem. Phys. 72: 316 (1980).CrossRefGoogle Scholar
  24. 24.
    R. J. Wolf and W. L. Hase, Quasiperiodic trajectories for a multidimensional anharmonic classical Hamiltonian excited above the unimolecular threshold, J. Chem. Phys. 73: 3779 (1980).CrossRefGoogle Scholar
  25. 25.
    R. J. Wolf and W. L. Hase, Importance of angular momentum constraints in the product energy partitioning of model H-C-C → H + C=C dissociation, J. Chem. Phys. 73: 3010 (1980).CrossRefGoogle Scholar
  26. 26.
    J. V. Michael and G. N. Suess, Application of RRKM theory to the chemical and thermal activation of ethyl radicals, J. Chem. Phys. 58: 2807 (1973).CrossRefGoogle Scholar
  27. 27.
    J. A. Cowfer and J. V. Michael, An investigation of nonequili-brium kinetic isotope effects in chemically activated ethyl radicals, J. Chem. Phys. 62: 3505 (1975).CrossRefGoogle Scholar
  28. 28.
    D. G. Keil, K. P. Lynch, J. A. Cowfer, and J. V. Michael, An investigation of nonequilibrium kinetic isotope effects in chemically activated vinyl radicals, Int. J. Chem. Kinet. 8: 825 (1976).CrossRefGoogle Scholar
  29. 29.
    J. M. Parson and Y. T. Lee, Crossed molecular beam study of F + C2H4, C2D4, J. Chem. Phys. 56: 4658 (1972).CrossRefGoogle Scholar
  30. 30.
    J. G. Moehlmann, J. T. Cleaves, J. W. Hudgens, and J. D. McDonald, Infrared chemiluminescence studies of the reaction of fluorine atoms with monosubstituted ethylene compounds, J. Chem. Phys. 60: 4790 (1974).CrossRefGoogle Scholar
  31. 31.
    J. M. Parson, K. Shobatake, Y. T. Lee, and S. A. Rice, Unimolecular decomposition of the long-lived complex formed in the reaction F + C4H8, J. Chem. Phys. 59: 1402 (1973).CrossRefGoogle Scholar
  32. 32.
    K. Shobatake, Y. T. Lee, and S. A. Rice, Crossed molecular beams study of the reaction F + C2H2Cl2 → Cl + C2H2C1F, J. Chem. Phys. 59: 6104 (1973).CrossRefGoogle Scholar
  33. 33.
    R. J. Buss, M. J. Coggiola, and Y. T. Lee, Molecular beam studies of unimolecular reactions: C1,F + C2H3Br, Faraday Disc. Chem. Soc. 67: 172 (1979).CrossRefGoogle Scholar
  34. 34.
    J. F. Durana and J. D. McDonald, Infrared chemiluminescence studies of chlorine substitution reactions with brominated unsaturated hydrocarbons, J. Chem. Phys. 64: 2518 (1976).CrossRefGoogle Scholar
  35. 35.
    J. G. Moehlmann and J. D. McDonald, Infrared chemiluminescence investigation of fluorine atom substituted reactions, J. Chem. Phys. 62: 3052 (1975).CrossRefGoogle Scholar
  36. 36.
    D. L. Bunker, K. R. Wright, W. L. Hase, and F. A. Houle, Exit-channel coupling effects in the unimolecular decomposition of triatomics, J. Phys. Chem. 83: 933 (1979).CrossRefGoogle Scholar
  37. 37.
    W. L. Hase, R. J. Wolf, and C. S. Sloane, Trajectory studies of the molecular dynamics of ethyl radical decomposition, J. Chem. Phys. 71: 2911 (1979).CrossRefGoogle Scholar
  38. 38.
    D. W. Placzek, B. S. Rabinovitch, and F. H. Dorer, Intramolecular energy relaxation. Butyl radical decomposition at high pressure, J. Chem. Phys. 44: 279 (1966).CrossRefGoogle Scholar
  39. 39.
    I. Oref, D. Schuetzle, and B. S. Rabinovitch, Unimolecular decomposition and intramolecular energy relaxation in the suprahigh-pressure region, J. Chem. Phys. 54: 575 (1971).CrossRefGoogle Scholar
  40. 40.
    D. C. Tardy and B. S. Rabinovitch, Intramolecular vibrational energy transfer in thermal unimolecular systems, Chem. Rev. 77: 369 (1977).CrossRefGoogle Scholar
  41. 41.
    C. S. Sloane and W. L. Hase, Ethyl radical potential energy surface, Faraday Disc. Chem. Soc. 62: 210 (1977).CrossRefGoogle Scholar
  42. 42.
    W. L. Hase, G. Mrowka, R. J. Brudzynski, and C. S. Sloane, An analytic function describing the H + C2H4 ⇄ C2H5 potential energy surface, J. Chem. Phys. 69: 3548 (1978).CrossRefGoogle Scholar
  43. 43.
    D. G. Truhlar and J. T. Muckerman, Reactive scattering cross sections III: Quasiclassical and semiclassical methods, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 505.CrossRefGoogle Scholar
  44. 44.
    R. N. Porter, L. M. Raff, and W. H. Miller, Quasiclassical selection of initial coordinates and momenta for a rotating Morse oscillator, J. Chem. Phys. 63: 2214 (1975).CrossRefGoogle Scholar
  45. 45.
    D. L. Bunker, Monte Carlo calculations. IV. Further studies of unimolecular dissociation, J. Chem. Phys. 40: 1946 (1964).CrossRefGoogle Scholar
  46. 46.
    E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, “Molecular Vibrations”, McGraw-Hill, New York (1955).Google Scholar
  47. 47.
    D. W. Oxtoby and S. A. Rice, Nonlinear resonance and stochasticity in intramolecular energy exchange, J. Chem. Phys. 65: 1676 (1976).CrossRefGoogle Scholar
  48. 48.
    P. Brumer and J. W. Duff, A variational equations approach to the onset of statistical intramolecular energy transfer, J. Chem. Phys. 65: 3566 (1976).CrossRefGoogle Scholar
  49. 49.
    K. D. Hänsel, The stability of molecular motion and intramolecular energy transfer, J. Chem. Phys. 70: 1830 (1979).CrossRefGoogle Scholar
  50. 50.
    C. Cerjan and W. P. Reinhardt, Critical point analysis of instabilities in Hamiltonian systems: Classical mechanics of stochastic intramolecular energy transfer, J. Chem. Phys. 71: 1819 (1979).CrossRefGoogle Scholar
  51. 51.
    D. L. Bunker and M. Pattengill, Monte Carlo calculations. VI. A re-evaluation of the RRKM theory of unimolecular reaction rates, J. Chem. Phys. 48: 772 (1968).CrossRefGoogle Scholar
  52. 52.
    J. Ford, The transition from analytic dynamics to statistical mechanics, Advan. Chem. Phys. 24: 155 (1973).CrossRefGoogle Scholar
  53. 53.
    I. C. Percival, Semiclassical theory of bound states, Advan. Chem. Phys. 36: 1 (1977).CrossRefGoogle Scholar
  54. 54.
    M. V. Berry, Regular and irregular motion, in: “Topics in Nonlinear Dynamics”, American Institute of Physics Proceedings No. 46, S. Jorna, ed., American Institute of Physics, New York (1978), p. 16.Google Scholar
  55. 55.
    J. L. Rookstool and C. A. Parr, Classical stretching dynamics in methylene, J. Chem. Phys. 83: 963 (1979).CrossRefGoogle Scholar
  56. 56.
    D. W. Noid, M. L. Koszykowski, and R. A. Marcus, Semiclassical calculation of eigenvalues for a three-dimensional system, J. Chem, Phys. 73: 391 (1980).Google Scholar
  57. 57.
    S. Kato and K. Morokuma, Potential energy characteristics and energy partitioning in chemical reactions: Ab initio MO study of H2CCH2F → H2CCHF + H reaction, J. Chem. Phys. 72: 206 (1980).CrossRefGoogle Scholar
  58. 58.
    R. A. Marcus, On the theory of energy distributions of products of molecular beam reactions involving transient complexes, J. Chem. Phys. 62: 1372 (1975).CrossRefGoogle Scholar
  59. 59.
    G. Worry and R. A. Marcus, On the theory of translational energy distributions of product molecular beam reactions involving transient complexes. II, J. Chem. Phys. 67: 1636 (1977).CrossRefGoogle Scholar
  60. 60.
    R. J. Wolf, Theoretical studies of the formation and decomposition of vibrationally excited model alkyl radicals, Ph.D. thesis, Wayne State University, Detroit, 1980.Google Scholar
  61. 61.
    G. F. Adams, G. D. Bent, G. D. Purvis, and R. J. Bartlett, The electronic structure of the formyl radical HCO, J. Chem. Phys, 71: 3697 (1979).CrossRefGoogle Scholar
  62. 62.
    T. H. Dunning, Jr., Theoretical characterization of the potential energy surface of the ground state of the HCO system, J. Chem. Phys. 73: 2304 (1980).CrossRefGoogle Scholar
  63. 63.
    W. D. Noid, M. L. Koszyknowski, and R. A. Marcus, Semiclassical calculation of bound states in multidimensional systems with Fermi resonance, J. Chem. Phys. 71: 2864 (1979).CrossRefGoogle Scholar
  64. 64.
    E. K. C. Lee, Laser photochemistry of selected vibronic and rotational states, Acc. Chem. Res. 10: 319 (1977).CrossRefGoogle Scholar
  65. 65.
    W. L. Hase, On the relationship between unimolecular lifetime and relative translational energy distributions, Chem. Phys. Lett. 67: 265 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • William L. Hase
    • 1
  • Ralph J. Wolf
    • 1
  1. 1.Department of ChemistryWayne State UniversityDetroitUSA

Personalised recommendations