Skip to main content

Rate Constant Calculations for the H + H2 and F + H2 Reaction Systems within the Infinite-Order Sudden Approximation

  • Chapter
Potential Energy Surfaces and Dynamics Calculations

Abstract

In the past decade, much progress has been made in the quantum mechanical theory of molecular reactive scattering.1-11 It has become possible, at least for very simple, collinearly dominated atom-diatom systems not having too many electrons, for one to carry out calculations of detailed state-to-state reactive cross sections. To date, converged close coupling (CC) results6,7 are available only for the simplest system, H + H2, but studies of isotopic variations of this system are underway. In addition, these rigorous CC formalisms have been combined with new angular momentum decoupling approximations such as the CS12,13 (“coupled states” or “centrifugal sudden”) and IOS14-17 (“infinite-order sudden”) to yield approximate methods which are tractable for systems other than H + H2 (or isotopic variants).18-28 Although still restricted to collinearly dominated reactions, applications have recently been reported for the H + H2 18,19,22-24,26,27 and F + H2 20,25 systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Baer and D. J. Kouri, Exact quantum cross sections for a three-dimensional angle-dependent model for three body reactions, Chem. Phys. Lett. 11: 239 (1971).

    Google Scholar 

  2. M. Baer and D. J. Kouri, Theory of reactive scattering. IV. Exact quantum mechanical study of angular-independent and angular-dependent models for three-dimensional rearrangement collisions, J. Chem. Phys. 56: 1758 (1972).

    Article  CAS  Google Scholar 

  3. R. P. Saxon and J. C. Light, Quantum calculations of planar reactive H + H2. I. Theory, J. Chem. Phys. 56: 3874 (1972).

    Article  CAS  Google Scholar 

  4. R. P. Saxon and J. C. Light, Quantum calculations of planar reactive H + H2. II. Application, J. Chem. Phys. 56: 3885 (1972).

    Article  CAS  Google Scholar 

  5. A. Altenberger-Siczek and J. C. Light, Quantum calculations of planar reactive H + H2. III. Labeled nuclei and angular distributions, J. Chem. Phys. 61: 4373 (1974).

    Article  CAS  Google Scholar 

  6. A. Kuppermann, G. C. Schatz, and M. Baer, Coplanar and collinear quantum mechanical reactive scattering: The importance of virtual vibrational channels in the H + H2 exchange reaction, J. Chem. Phys. 61: 4362 (1974).

    Article  CAS  Google Scholar 

  7. A. Kuppermann and G. C. Schatz, Quantum mechanical reactive scattering: An accurate three-dimensional calculation, J. Chem. Phys. 62: 2502 (1975).

    Article  CAS  Google Scholar 

  8. A. Kuppermann, G. C. Schatz, and M. Baer, Quantum mechanical reactive scattering for planar atom-plus-diatom systems. I. Theory, J. Chem. Phys. 65: 4596 (1976).

    Article  CAS  Google Scholar 

  9. G. C. Schatz and A. Kuppermann, Quantum mechanical reactive scattering for planar atom-plus-diatom systems. II. Accurate cross sections for H + H2, J. Chem. Phys. 65: 4624 (1976).

    Article  CAS  Google Scholar 

  10. G. C. Schatz and A. Kuppermann, Quantum mechanical reactive scattering for three-dimensional atom-plus-diatom systems. I. Theory, J. Chem. Phys. 65: 4642 (1976).

    Article  CAS  Google Scholar 

  11. G. C. Schatz and A. Kuppermann, Quantum mechanical reactive scattering for three-dimensional atom-plus-diatom systems. II. Accurate cross sections for H + H2, J. Chem. Phys. 65: 4668 (1976).

    Article  CAS  Google Scholar 

  12. A. B. Elkowitz and R. E. Wyatt, Quantum mechanical reaction cross sections for the three-dimensional hydrogen exchange reaction, J. Chem. Phys. 62: 2504 (1975).

    Article  CAS  Google Scholar 

  13. A. B. Elkowitz and R. E. Wyatt, Three-dimensional natural-coordinate asymmetric-top theory of reactions: Application to H + H2, J. Chem. Phys. 63: 702 (1975).

    Article  CAS  Google Scholar 

  14. S. A. Harms and R. E. Wyatt, Hindered asymmetric top wave functions for three-dimensional H + H2, J. Chem. Phys. 62: 3173 (1975).

    Article  CAS  Google Scholar 

  15. G. Wolken and M. Karplus, Theoretical studies of H + H2 reactive scattering, J. Chem. Phys. 60: 361 (1974).

    Google Scholar 

  16. M. Baer, A coplanar quantum mechanical study of the exchange reaction HF + H, J. Chem. Phys. 65: 493 (1976).

    Article  CAS  Google Scholar 

  17. R. B. Walker, J. C. Light, and A. Altenberger-Siczek, Chemical reaction theory for asymmetric atom-molecule collisions, J. Chem. Phys. 64: 1166 (1976).

    Article  CAS  Google Scholar 

  18. R. B. Walker, E. B. Stechel, and J. C. Light, Accurate H3 dynamics on an accurate H3 potential surface, J. Chem. Phys. 69: 2922 (1978).

    Article  CAS  Google Scholar 

  19. D. G. Truhlar and R. E. Wyatt, History of H3 kinetics, Annu. Rev. Phys. Chem. 27: 1 (1976).

    Article  CAS  Google Scholar 

  20. P. McGuire and D. J. Kouri, Quantum mechanical approach to molecular collisions. jz-Conserving coupled states approximation, J. Chem. Phys. 60: 2488 (1974).

    Article  CAS  Google Scholar 

  21. R. T Pack, Space-fixed vs. body-fixed axes in atom-diatomic molecule scattering: Sudden approximations, J. Chem. Phys. 60: 633 (1974).

    Article  CAS  Google Scholar 

  22. T. P. Tsien and R. T Pack, Rotational excitation in molecular collisions: A strong coupling approximation, Chem. Phys. Lett. 6: 54 (1970).

    Article  CAS  Google Scholar 

  23. T. P. Tsien and R. T Pack, Rotational excitation in molecular collisions: A many state test of the strong coupling approximation, Chem. Phys. Lett. 8: 579 (1971).

    Article  CAS  Google Scholar 

  24. T. P. Tsien, G. A. Parker, and R. T Pack, Rotationally inelastic molecular scattering: Computational tests of some simple solutions to the strong coupling problem, J. Chem. Phys. 59: 5373 (1973). See also reference 13.

    Article  CAS  Google Scholar 

  25. C. F. Curtiss, Molecular collisions VI. Diagrammatic methods, J. Chem. Phys. 48: 1725 (1968).

    Article  Google Scholar 

  26. C. F. Curtiss, Molecular collisions VIII, J. Chem. Phys. 49: 1952 (1968).

    Article  CAS  Google Scholar 

  27. C. F. Curtiss, Molecular collisions XII. Generalized phase shifts, J. Chem. Phys. 52: 4832 (1970).

    Article  CAS  Google Scholar 

  28. M. A. Brandt and D. G. Truhlar, Importance of long-range forces and short-range forces in electron scattering: Elastic scattering by N2 at 10 and 30 eV, Chem. Phys. Lett. 23: 48 (1973).

    Article  CAS  Google Scholar 

  29. D. Secrest, Theory of angular momentum decoupling approximations for rotational transitions in scattering, J. Chem. Phys. 62: 710 (1975).

    Article  CAS  Google Scholar 

  30. D. J. Kouri, Rotational excitation II. Approximation methods, in: “Atom-Molecule Collision Theory: A Guide for the Experimentalist”, R. B. Bernstein, ed., Plenum, New York (1979), p. 301.

    Chapter  Google Scholar 

  31. A. B. Elkowitz and R. E. Wyatt, jz-Conserving approximation for the hydrogen exchange reaction, Mol. Phys. 31: 189 (1976).

    Article  CAS  Google Scholar 

  32. A. Kuppermann, G. C. Schatz, and J. P. Dwyer, Angular momentum decoupling approximations in the quantum dynamics of reactive systems, Chem. Phys. Lett. 45: 71 (1977).

    Article  CAS  Google Scholar 

  33. M. J. Redmon and R. E. Wyatt, Computational methods for reactive scattering, Int. J. Quantum Chem. Symp. 11: 343 (1977).

    CAS  Google Scholar 

  34. M. J. Redmon and R. E. Wyatt, Quantal resonance structure in the three-dimensional F + H2 reaction, Chem. Phys. Lett. 63: 209 (1979).

    Article  CAS  Google Scholar 

  35. V. Khare, D. J. Kouri, and M. Baer, Infinite-order sudden approximation for reactive scattering. I. Basic l-labeled formulation, J. Chem. Phys. 71: 1188 (1979).

    Article  CAS  Google Scholar 

  36. M. Baer, V. Khare, and D. J. Kouri, Integral total reaction cross section calculations with the infinite-order sudden approximation, Chem. Phys. Lett. 68: 378 (1979).

    Article  CAS  Google Scholar 

  37. M. Baer, H. R. Mayne, V. Khare, and D. J. Kouri, Integral and differential cross sections for the H2(vi=l) + H reaction. A comparison between average-l labeled infinite-order sudden approximation and classical treatments, Chem. Phys. Lett. 72: 269 (1980).

    Article  CAS  Google Scholar 

  38. D. J. Kouri, V. Khare, and M. Baer, Infinite-order sudden approximation for reactive scattering. II. Computational tests for H + H2, J. Chem. Phys., in press.

    Google Scholar 

  39. J. Jellinek, M. Baer, V. Khare, and D. J. Kouri, Integral cross sections for the reaction F + H2(vi=0) → HF(vf=0,1,2,3) + H: A quantum mechanical calculation with the infinite-order sudden approximation, Chem. Phys. Lett. 75: 460 (1980).

    Article  CAS  Google Scholar 

  40. J. M. Bowman and K. T. Lee, Sudden rotation calculations of the H + H2(v=1,j=0) reaction, Chem. Phys. Lett. 64: 291 (1979).

    Article  CAS  Google Scholar 

  41. J. M. Bowman and K. T. Lee, Sudden rotation reactive scattering: Theory and application to three dimensional H + H2, J. Chem. Phys. 72: 5071 (1980).

    Article  CAS  Google Scholar 

  42. G.-D. Barg and G. Drolshagen, Reactive and inelastic sudden rotational approximation in the body-fixed frame, Chem. Phys. 47: 209 (1980).

    Article  CAS  Google Scholar 

  43. V. Khare, D. J. Kouri, and D. K. Hoffman, On jz-preserving propensities in molecular collisions. I. Quantal coupled states and classical impulsive approximations, J. Chem. Phys., in press.

    Google Scholar 

  44. V. Khare, D. E. Fitz, and D. J. Kouri, Effect on phase and orbital wave parameter choices on CS and IOS degeneracy averaged differential cross sections, J. Chem. Phys. 73: 2802 (1980). See also the discussion and references to research on l choice in reference 17.

    Article  CAS  Google Scholar 

  45. V. Khare and D. J. Kouri, Time-reversal symmetry for magnetic transitions in rotationally inelastic scattering. I. Exact theory, J. Chem, Phys. 72: 2007 (1980).

    CAS  Google Scholar 

  46. V. Khare and D. J. Kouri, Time-reversal symmetry for magnetic transitions in rotationally inelastic scattering. II. Angular momentum decoupling approximations, J. Chem. Phys. 72: 2017 (1980).

    Article  CAS  Google Scholar 

  47. R. D. Levine, “Quantum Mechanics of Molecular Rate Processes”, Oxford University Press, London (1969).

    Google Scholar 

  48. Discussions of the activation energy and its temperature dependence may be found in D. G. Truhlar and A. Kuppermann, Exact and approximate quantum mechanical reaction probabilities and rate constants for the collinear H + H2 reaction, J. Chem. Phys. 56: 2232 (1972).

    Article  CAS  Google Scholar 

  49. D. G. Truhlar and J. C. Gray, Interpretation and temperature dependence of the energy of activation for the reactions H + Cl2, H2 + I, H + H2, and isotopic analogs, Chem. Phys. Lett. 57: 93 (1978).

    Article  CAS  Google Scholar 

  50. J. C. Gray, D. G. Truhlar, and M. Baer, Test of trajectory calculations against quantum mechanical state-to-state and thermal collinear reaction rates for H + Cl2 → HC1 + Cl, J. Phys. Chem. 83: 1045 (1979).

    Article  CAS  Google Scholar 

  51. R. N. Porter and M. Karplus, Potential energy surface for H3, J. Chem. Phys. 40: 1105 (1964).

    Article  CAS  Google Scholar 

  52. M. Karplus, R. N. Porter, and R. D. Sharma, Exchange reactions with activation energy. I. Simple barrier potential for (H,H2), J. Chem. Phys. 43: 3259 (1965).

    Article  CAS  Google Scholar 

  53. J. N. L. Connor, W. Jakubetz, J. Manz, and J. C. Whitehead, On the information theoretic synthesis of three-dimensional vibrational reaction probabilities from collinear results, Chem. Phys. 39: 395 (1979).

    Article  CAS  Google Scholar 

  54. E. B. Gordon, B. I. Ivanov, A. P. Perminov, V. E. Balalaev, A. N. Ponomarev, and V. V. Filatov, Measurement of rate constants for hydrogen atom exchange with vibrationally excited H2, HD, and D2 molecules, Chem. Phys. Lett. 48: 425 (1978).

    Article  Google Scholar 

  55. B. C. Garrett and D. G. Truhlar, Reliable Ab initio calculation of a chemical reaction rate and a kinetic isotope effect: H + H2 and 2H + 2H2, Proc. Natl. Acad. Sci. USA 76: 4755 (1979).

    Article  CAS  Google Scholar 

  56. J. T. Muckerman, Applications of classical trajectory techniques to reactive scattering, Theor. Chem.: Advan. Perspectives 6A: 1 (1981). Earlier CT studies by Muekerman, not employing surface M5, are reported in.

    Google Scholar 

  57. J. T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. II. Dependence on the potential energy surface, J. Chem. Phys. 56: 2997 (1972).

    Article  CAS  Google Scholar 

  58. J. T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. III. The hot-atom reactions of 18F with HD, J. Chem. Phys. 57: 3388 (1972).

    Article  CAS  Google Scholar 

  59. D. G. Truhlar, Multiple potential energy surfaces for reactions of species in degenerate electronic states, J. Chem. Phys. 56: 3189 (1972).

    Article  CAS  Google Scholar 

  60. D. G. Truhlar, 61: 440(E) (1974).

    Google Scholar 

  61. J. T. Muckerman and M. D. Newton, Comment on “Multiple potential energy surfaces for reactions of species in degenerate electronic states” by D. G. Truhlar, J. Chem. Phys. 56: 3191 (1972).

    Article  CAS  Google Scholar 

  62. D. S. Perry and J. C. Polanyi, Energy, distribution among reaction products. IX. F + H2, HD, and D2, Chem. Phys. 12: 419 (1976).

    Article  CAS  Google Scholar 

  63. D. G. Truhlar, private communication. See also J. C. Tully, Collisions of F(2P1/2) with H2, J. Chem. Phys. 60: 3042 (1974).

    Article  Google Scholar 

  64. J. C. Polanyi and J. L. Schreiber, The reaction F + H2 → HF + H, Faraday Disc. Chem, Soc. 62: 267 (1977).

    CAS  Google Scholar 

  65. E. Wurzberg and P. L. Houston, to be published.

    Google Scholar 

  66. V. I. Igoshin, L. V. Kulatov, and A. I. Nikitin, Determination of the rate constant of the chemical reaction F + H2(D2) → HF(DF) + H(D) from the stimulated emission of the HF(DF) molecules, Sov. J. Quantum. Electron. 3: 306 (1974).

    Article  Google Scholar 

  67. R. F. Heidner, J. F. Bott, C. E. Gardner, and J. E. Melzer, Absolute rate coefficients for F + H2 and F + D2 at T = 295–765 K, J. Chem. Phys. 72: 4815 (1980).

    Article  CAS  Google Scholar 

  68. V. P. Bulatov, V. P. Balakhin, and O. M. Sarkisov, Rate constants for the reactions of atomic fluorine with hydrogen and deuterium, Akad. Nauk. SSSR, Div. Chem. Sci, 26: 1600 (1977).

    Google Scholar 

  69. R. L. Jaffe and J. B. Anderson, Classical trajectory analysis of the reaction F + H2 → HF + H, J. Chem. Phys. 54: 2224 (1971).

    Article  CAS  Google Scholar 

  70. R. L. Jaffe and J. B. Anderson, Classical trajectory analysis of the reaction F + H2 → HF + H, J. Chem. Phys. 56: 682(E) (1972).

    Article  Google Scholar 

  71. B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnuson, Improved treatment of threshold contributions in variational transition state theory, J. Phys. Chem. 84: 1730 (1980).

    Article  CAS  Google Scholar 

  72. D. J. Kouri and M. Baer, Collinear quantum mechanical calculations of the \(He-H_{2}^{+}\) proton transfer reaction, Chem. Phys. Lett. 24: 37 (1974).

    Article  CAS  Google Scholar 

  73. J. T. Adams, Collinear quantum mechanical calculations for the reaction: \(He+H_{2}^{+}\rightarrow HeH^{+}+H\), Chem. Phys. Lett. 33: 275 (1975).

    Article  CAS  Google Scholar 

  74. P. J. Brown and E. F. Hayes, Nonempirical LCAO-MO-SCF study of the energy surface for linear \(HeH_{2}^{+}\), J. Chem. Phys. 55: 922 (1971).

    Article  CAS  Google Scholar 

  75. N. Sathyamurthy, R. Rangarajan, and L. M. Raff, Reactive scattering calculations on a spline fitted Ab initio surface: The \(He+H_{2}^{+}(v-0,1,2)\rightarrow HeH^{+}+H\) reaction, J. Chem. Phys. 64: 4606 (1976).

    Article  CAS  Google Scholar 

  76. N. Sathyamurthy, J. W. Duff, C. Stroud, and L. M. Raff, On the origin of the dynamical differences on the diatomics-in-molecules and spline-fitted Ab initio surfaces for the \(He+H_{2}^{+}\) reaction, J. Chem. Phys. 67: 3563 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khare, V., Kouri, D.J., Jellinek, J., Baer, M. (1981). Rate Constant Calculations for the H + H2 and F + H2 Reaction Systems within the Infinite-Order Sudden Approximation. In: Truhlar, D.G. (eds) Potential Energy Surfaces and Dynamics Calculations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1735-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1735-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1737-2

  • Online ISBN: 978-1-4757-1735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics