Advertisement

Theoretical Studies of Selected Reactions in the Hydrogen-Oxygen System

  • Thom. H. DunningJr.
  • Stephen P. Walch
  • Albert F. Wagner

Abstract

For a non-collinear polyatomic molecule composed of N atoms, the potential energy surface is a parametric function of (3N-6) internal coordinates. If M calculations are required to specify the energy dependence for one coordinate, M3N-6 calculations would be required to fully specify the surface. Clearly, a full ab initio characterization of a molecular potential energy surface is only possible for systems with few atoms.

Keywords

Saddle Point Potential Energy Surface Transition State Theory Quartic Term Transition State Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. B. Wilson, Jr., J. C. Decius, and P. G. Cross, “Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra”, McGraw-Hill, New York (1955).Google Scholar
  2. 2.
    W. H. Miller, N. C. Handy, and J. E. Adams, Reaction path Hamiltonian for polyatomic molecules, J. Chem. Phys. 72: 99 (1980).CrossRefGoogle Scholar
  3. 3.(a)
    S. P. Walch, T. H. Dunning, Jr., R. C. Raffenetti, and F. W. Bobrowicz, A theoretical study of the potential surface for O(3P) + H2, J. Chem. Phys, 72: 406 (1980).CrossRefGoogle Scholar
  4. (b).
    S. P. Walch, A. F. Wagner, T. H. Dunning, Jr., and G. C. Schatz, Theoretical studies of the O(3P) + H2 reaction, J. Chem. Phys. 72: 2894 (1980).CrossRefGoogle Scholar
  5. 4.(a)
    S. P. Walch and T. H. Dunning, Jr., A theoretical study of the potential energy surface for OH + H2, J. Chem. Phys. 72: 1303 (1980).CrossRefGoogle Scholar
  6. (b).
    G. C. Schatz and S. P. Walch, An Ab initio calculation of the rate constant for the OH + H2 → H2O + H reaction, J. Chem. Phys. 72: 776 (1980).CrossRefGoogle Scholar
  7. 5.
    T. H. Dunning, Jr., S. P. Walch, and M. M. Goodgame, Theoretical characterization of the potential energy curve for hydrogen atom addition to molecular oxygen, J. Chem. Phys., to be published.Google Scholar
  8. 6.
    I. Glassman, “Combustion”, Academic, New York (1977), chapter 3Google Scholar
  9. 7.
    J. A. Miller and R. J. Kee, Chemical nonequilibrium effects in hydrogen-air laminar jet diffusion flames, J. Phys. Chem. 81: 2534 (1977).CrossRefGoogle Scholar
  10. 8.
    D. L. Baulch, D. D. Drysdale, D. G. Horne, and A. C. Lloyd, “Evaluated Kinetic Data for High Temperature Reactions”, Vol. 1, Butterworths, London (1972).Google Scholar
  11. 9.
    G. Dixon-Lewis and D. J. Williams, The oxidation of hydrogen and carbon monoxide, in: “Comprehensive Chemical Kinetics”, Vol. 17, Elsevier Scientific Publishing Co., New York (1977), p. 1.Google Scholar
  12. 10.
    N. Cohen and K. Westberg, unpublished.Google Scholar
  13. 11.
    See, e.g., W. A. Goddard III, T. H. Dunning, Jr., W. J. Hunt, and P. J. Hay, Generalized valence bond description of bonding in low-lying states of molecules, Acc. Chem. Res. 6: 368 (1973).CrossRefGoogle Scholar
  14. B. J. Moss, F. W. Bobrowicz, and W. A. Goddard III, The generalized valence bond description of O2, J. Chem. Phys. 63: 4632 (1975).CrossRefGoogle Scholar
  15. 12.
    P. J. Hay and T. H. Dunning, Jr., Polarization CI wavefunctions: The valence states of the NH radical, J. Chem. Phys. 64: 5077 (1976).CrossRefGoogle Scholar
  16. T. H. Dunning, Jr., The low-lying states of hydrogen fluoride: Potential energy curves for the X1+, 3+, 3∏, and 1∏ states, J. Chem. Phys. 65: 3254 (1976).CrossRefGoogle Scholar
  17. 13.
    L. B. Harding and W. A. Goddard III, Intermediates in the chem-iluminescent reaction of singlet oxygen with ethylene. Ab vnitio studies, J. Amer. Chem. Soc. 99: 4520 (1977).CrossRefGoogle Scholar
  18. 14.
    S. P. Walch and T. H. Dunning, Jr., Calculated barrier to hydrogen atom abstraction from CH4 by O(3P), J. Chem. Phys. 72: 3221 (1980).CrossRefGoogle Scholar
  19. 15.
    S. P. Walch, Calculated barriers to abstraction and exchange for CH4 + H, J. Chem. Phys. 72: 4932 (1980).CrossRefGoogle Scholar
  20. 16.
    T. H. Dunning, Jr., Theoretical characterization of the barriers to abstraction and exchange in H + HX (X = F, Cl, Br, I), to be published.Google Scholar
  21. 17.
    H. F. Schaefer III, R. A. Klemm, and F. E. Harris, First-order wavefunctions, orbital correlation energies, and electron affinities of first-row atoms, J. Chem. Phys. 51: 4643 (1969).CrossRefGoogle Scholar
  22. H. F. Schaefer III and C. F. Bender, Multiconfiguration wave-functions for the water molecule, J. Chem. Phys. 55: 1720 (1971).CrossRefGoogle Scholar
  23. 18.
    H. S. Johnston, “Gas Phase Reaction Rate Theory”, Ronald Press, New York (1966), chapter 8.Google Scholar
  24. 19.
    D. G. Truhlar, Accuracy of trajectory calculations and transition state theory for thermal rate constants of atom transfer reactions, J. Phys. Chem. 83: 188 (1979).CrossRefGoogle Scholar
  25. B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules, J. Phys. Chem. 83: 1079 (1979).CrossRefGoogle Scholar
  26. B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules, J. Phys. Chem. 84: 6821(E) (1980).Google Scholar
  27. B. C. Garrett, D. G. Truhlar, R. S. Grev, and A. W. Magnuson, Improved treatment of threshold contributions in variational transition-state theory, J. Phys. Chem. 84: 1730 (1980).CrossRefGoogle Scholar
  28. 20.
    B. C. Garrett, D. G. Truhlar, R. S. Grev, A. W. Magnuson, and J. N. L. Connor, Variational transition state theory, vibrationally adiabatic transmission coefficients and the unified statistical model tested against accurate quantal rate constants for collinear F + H2, H + F2, and isotopic analogs, J. Chem. Phys. 73: 1721 (1980).CrossRefGoogle Scholar
  29. 21.
    B. C. Garrett and D. G. Truhlar, Importance of quartic anharmonicity for bending partition functions in transition-state theory, J. Phys. Chem. 83: 1915 (1979).CrossRefGoogle Scholar
  30. 22.
    E. P. Wigner, Uber das Uberschreiten von Potentialschwellen bei chemischen Reaktionen, Z. Phys. Chem. Abt. B19: 203 (1932).Google Scholar
  31. 23.
    R. F. W. Bader and R. A. Gangi, The lowest singlet and triplet potential surfaces of H2O, Chem. Phys. Lett. 6: 312 (1970).CrossRefGoogle Scholar
  32. R. F. W. Bader and R. A. Gangi, Theoretical investigations of the chemistry of singlet and triplet species. I. Insertion and abstraction reactions, J. Amer. Chem. Soc. 93: 1831 (1971).CrossRefGoogle Scholar
  33. 24.
    C. F. Bender, P. K. Pearson, S. V. O’Neil, and H. F. Schaefer III, Potential energy surface including electron correlation for the chemical F + H2 → FH + H. I. Preliminary surface, J. Chem. Phys. 56: 4626 (1972).CrossRefGoogle Scholar
  34. C. F. Bender, S. V. O’Neil, P. K. Pearson, and H. F. Schaefer III, Potential energy surface including electron correlation for F + H2 → FH + H: Refined linear surface, Science 176: 1412 (1972).CrossRefGoogle Scholar
  35. 25.
    R. E. Howard, A. D. McLean, and W. A. Lester, Jr., Extended basis first-order. CI study of the 1A′, 3A″, 1A″, and B1A′ potential energy surfaces of the \(O(^{3}P, ^{1}D)+H_{2}(^{1}\sum_{g}^{+})\) reaction, J. Chem. Phys. 71: 2412 (1980).CrossRefGoogle Scholar
  36. 26.
    W. A. Goddard III, Selection rules for chemical reactions using the orbital phase continuity principle, J. Amer. Chem. Soc. 94: 793 (1972).CrossRefGoogle Scholar
  37. 27.
    B. R. Brooks and H. F. Schaefer III, Reactions of carbynes. Potential energy surfaces for the doublet and quartet methylidyne (CH) reactions with molecular hydrogen, J. Chem. Phys. 67: 5146 (1977).CrossRefGoogle Scholar
  38. 28.
    S. P. Walch, A localized orbital description of CH(2∏) insertion reactions. Least-motion and non-least-motion pathways for the dimerization reaction CH(2∏) + CH(2∏) → C2H2, J. Chem. Phys., submitted for publication.Google Scholar
  39. 29.
    C. W. Bauschlicher, Jr., H. F. Schaefer III, and C. F. Bender, The least-motion insertion reaction CH2(1A1) + H2 → CH4. Theoretical study of a process forbidden by orbital symmetry, J. Amer. Chem. Soc. 98: 1653 (1976).CrossRefGoogle Scholar
  40. C. W. Bauschlicher, Jr., K. Haber, H. F. Schaefer III, and C. F. Bender, Concerted non-least-motion pathway for the singlet methylene insertion reaction CH2(1A1) + H2 → CH4, J. Amer. Chem. Soc. 99: 3610 (1977).CrossRefGoogle Scholar
  41. H. Kollmar and V. Staemmler, Ab initio calculations of the potential energy surface of the reaction of singlet methylene with the hydrogen molecule, Theoret. Chim. Acta 51: 207 (1979).CrossRefGoogle Scholar
  42. 30.
    B. Zurawski and W. Kutzelnigg, Ab initio calculation of the reaction path for the addition of singlet (1A1) methylene to ethylene, J. Amer. Chem. Soc. 100: 2654 (1978).CrossRefGoogle Scholar
  43. 31.
    G. S. Hammond, A correlation of reaction rates, J. Amer. Chem. Soc. 77: 334 (1955).CrossRefGoogle Scholar
  44. 32.
    M. H. Mok and J. C. Polanyi, Location of energy barriers, II. Correlation with barrier height, J. Chem. Phys. 51: 1451 (1969).CrossRefGoogle Scholar
  45. 33.
    B. Rosen, “Spectroscopic Data Relative to Diatomic Molecules”, Pergamon, New York (1970).Google Scholar
  46. 34.
    G. C. Schatz, A. F. Wagner, S. P. Walch, and J. M. Bowman, A comparative study of the reaction dynamics of several potential energy surfaces for O(3P) + H2 → OH + H. I., to be published.Google Scholar
  47. 35.
    R. Schinke and W. A. Lester, Jr., Trajectory study of O + H2 reactions on fitted Ab initio surfaces. I. Triplet case, J. Chem. Phys. 70: 4893 (1979).CrossRefGoogle Scholar
  48. R. Schinke and W. A. Lester, Jr., Trajectory study of O + H2 reactions on fitted Ab initio surfaces. I. Triplet case, J. Chem. Phys. 72: 6821(E) (1980).Google Scholar
  49. 36.
    A. A. Westenberg and N. de Haas, Atom-molecule kinetics using ESR detection, III. Results for O + D2 → OD + D and theoretical comparison with O + H2 → OH + H, J. Chem. Phys. 47: 4241 (1967).CrossRefGoogle Scholar
  50. 37.
    P. A. Whitlock, J. T. Muckerman, and E. R. Fisher, “Theoretical Investigations of the Energetics of the Reactions O(3P,1D) + H2 and C(1D) + H2”, Research Institute for Engineering Sciences, Wayne State University, Detroit (1976).Google Scholar
  51. 38.
    B. R. Johnson and N. W. Winter, Classical trajectory study of the effect of vibrational energy on the reaction of molecular hydrogen with atomic oxygen, J. Chem. Phys. 66: 4116 (1977).CrossRefGoogle Scholar
  52. 39.
    K. T. Lee, J. M. Bowman, A. F. Wagner, and G. C. Schatz, The reaction dynamics of several potential energy surfaces for O(3P) + H2 → OH + H. II. Transition state theory with collinear exact quantum transmission coefficients, to be published.Google Scholar
  53. 40.
    G. Herzberg, “Molecular Spectra and Molecular Structure, III. Electronic Spectra and Electronic Structure of Polyatomic Molecules”, D. Van Nostrand Company, Inc., Princeton (1966).Google Scholar
  54. 41.
    I. W. M. Smith and R. Zellner, Rate measurements of reactions of OH by resonance absorption. Part 3. Reactions of OH with H2, D2, and hydrogen and deuterium halides, J. Chem. Soc. Faraday Trans. II 70: 1045 (1974).CrossRefGoogle Scholar
  55. 42.
    G. C. Schatz and H. Elgersma, A quasiclassical trajectory study of product vibrational distributions in the OH + H2 → H2O + H reaction, Chem. Phys. Lett. 73: 21 (1980).CrossRefGoogle Scholar
  56. 43.
    J. E. Spencer, H. Endo, and G. P. Glass, Reactions of vibrationally excited OH, in: “Sixteenth Symposium (International) on Combustion”, The Combustion Institute, Pittsburgh (1976), p. 829.Google Scholar
  57. G. C. Light and J. H. Matsumoto, The effect of vibrational excitation in the reactions of OH with H2, Chem. Phys. Lett. 58: 578 (1978).CrossRefGoogle Scholar
  58. 44.
    R. Zellner and W. Steinert, unpublished (quoted in reference 43).Google Scholar
  59. 45.
    G. C. Schatz, A quasiclassical trajectory study of reagent vibrational excitation effects in the OH + H2 → H2O + H reaction, J. Chem. Phys. 74: 1133 (1981).CrossRefGoogle Scholar
  60. 46.
    J. C. Polyani and W. H. Wong, Location of energy barriers, I. Effect on the dynamics of reactions A + BC, J. Chem. Phys. 51: 1439 (1969).CrossRefGoogle Scholar
  61. 47.
    D. W. Trainor and C. W. Von Rosenberg, Energy partitioning in the products of elementary reaction involving OH-radicals, in: “Fifteenth Symposium (International) on Combustion”, The Combustion Institute, Pittsburgh (1974), p. 755.Google Scholar
  62. 48.
    C. F. Melius and R. J. Blint, The potential energy surface of the HO2 molecular system, Chem. Phys. Lett. 64: 183 (1979).CrossRefGoogle Scholar
  63. 49.
    S. R. Langhoff and R. L. Jaffe, Theoretical study of the four lowest doublet electronic states of the hydroperoxyl radical: Application to photodissociation, J. Chem. Phys. 71: 1475 (1979).CrossRefGoogle Scholar
  64. 50.
    Y. Beers and C. J. Howard, The spectrum of DO2 near 60 GHz and the structure of the hydroperoxyl radical, J. Chem. Phys. 64: 1541 (1976).CrossRefGoogle Scholar
  65. 51.
    S. N. Foner and R. L. Hudson, Mass spectrometry of the HO2 free radical, J. Chem. Phys. 36: 2681 (1962).CrossRefGoogle Scholar
  66. 52.
    D. E. Milligan and M. E. Jacox, Infrared spectroscopic evidence for the species HO2, J. Chem. Phys. 38: 2627 (1963).CrossRefGoogle Scholar
  67. D. E. Milligan and M. E. Jacox, Infrared spectroscopic evidence for the species HO2, J. Chem. Phys. 40: 605(E) (1964).Google Scholar
  68. M. E. Jacox and D. E. Milligan, Spectrum and structure of the HO2 radical, J. Mol. Spectry. 42: 495 (1972).CrossRefGoogle Scholar
  69. D. W. Smith and L. Andrews, Argon matrix infrared spectra and vibrational analysis of the hydroperoxyl and deuteroperoxyl free radicals, J. Chem. Phys, 60: 81 (1974).CrossRefGoogle Scholar
  70. 53.
    M. J. Kurylo, Absolute rate constants for the reaction H + O2 + M → HO2 + M over the temperature range 203–404 K, J. Phys. Chem. 76: 3518 (1972).CrossRefGoogle Scholar
  71. W. Wong and D. D. Davis, A flash photolysis-resonance fluorescence study of the reaction of atomic hydrogen with molecular oxygen H + O2 + M → HO2 + M, Int. J. Chem. Kinet. 6: 401 (1974).CrossRefGoogle Scholar
  72. 54.
    R. J. Blint, Calculation of the rate constant for the reaction of atomic hydrogen with molecular oxygen to form the free radical HO2, J. Chem. Phys. 73: 765 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Thom. H. DunningJr.
    • 1
  • Stephen P. Walch
    • 1
  • Albert F. Wagner
    • 1
  1. 1.Theoretical Chemistry Group, Chemistry DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations