Advertisement

Reaction Path Hamiltonian for Polyatomic Systems: Further Developments and Applications

  • William H. Miller

Abstract

Ab initio quantum chemistry has made important advances recently in developing methods1 for the accurate and efficient calculation of the gradient of the potential energy surface, i.e., the derivative of the Born-Oppenheimer electronic energy with respect to nuclear coordinates, for a general molecular system. This has been used most commonly to facilitate the search for transition states, i.e., saddle points on a potential energy surface, but once a saddle point is found it can be used to follow the steepest descent path down from the transition state to reactants and to products. If mass-weighted cartesian coordinates are used, this is the reaction path,2 and the distance along it the (mass-weighted) reaction coordinate.

Keywords

Saddle Point Potential Energy Surface Vibrational Mode Reaction Path Reaction Coordinate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for example, (a) P. Pulay, Direct use of the gradient for investigation molecular energy surfaces, in: “Applications of Electronic Structure”, H. F. Schaefer III, ed., Plenum, New York (1977), p. 153.CrossRefGoogle Scholar
  2. (b).
    J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Derivative studies in Hartree-Fock and Møller-Plesset theories, Int. J. Quantum Chem. Symp. 13: 225 (1979).Google Scholar
  3. (c).
    B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, and H. F. Schaefer III, Analytic gradients from correlated wavefunctions via the two-particle density matrix and the unitary group approach, J. Chem. Phys. 72: 4652 (1980).CrossRefGoogle Scholar
  4. 2.(a)
    K. Fukui, S. Kato, and H. Fujimoto, Constituent analysis of the potential gradient along a reaction coordinate. Method and an application to CH4 + T reaction, J. Amer. Chem. Soc. 97: 1 (1975).CrossRefGoogle Scholar
  5. (b).
    H. F. Schaefer III, Potential energy surfaces for methylene reactions, Chem. Britain 11: 227 (1975).Google Scholar
  6. 3.
    W. H. Miller, N. C. Handy, and J. E. Adams, Reaction path Hamiltonian for polyatomic molecules, J. Chem. Phys. 72: 99 (1980).CrossRefGoogle Scholar
  7. 4.
    R. A. Marcus, On the analytical mechanics of chemical reactions. Quantum mechanics of linear collisions, J. Chem. Phys. 45: 4493 (1966).CrossRefGoogle Scholar
  8. 4.
    R. A. Marcus, On the analytical mechanics of chemical reactions. Classical mechanics of linear collisions, J. Chem. Phys. 45: 4500 (1966).CrossRefGoogle Scholar
  9. 4.
    R. A. Marcus, Analytical mechanics of chemical reactions. III. Natural collision coordinates, J. Chem. Phys. 49: 2610 (1968).CrossRefGoogle Scholar
  10. 5.
    G. L. Hofacker, Quantentheorie chemischer reaktionen, Z. Naturforsch. A 18: 607 (1963).Google Scholar
  11. S. F. Fischer, G. L. Hofacker, and R. Seiler, Model approach to non-adiabatic reaction processes, J. Chem. Phys. 51: 3951 (1969).CrossRefGoogle Scholar
  12. 6.
    S. K. Gray, W. H. Miller, Y. Yamaguchi, and H. F. Schaefer III, Reaction path Hamiltonian: Tunneling effects in the unimolecular isomerization HNC → HCN, J. Chem. Phys. 73: 2733 (1980).CrossRefGoogle Scholar
  13. 7.
    W. H. Miller, Tunneling corrections to unimolecular rate constants, with application to formaldehyde, J. Amer. Chem. Soc. 101: 6810 (1979); S. K. Gray, W. H. Miller, Y. Yamaguchi, and H. F. Schaefer III, Tunneling in the unimolecular decomposition of formaldehyde, a more quantitative study, J. Amer. Chem. Soc., to be published.CrossRefGoogle Scholar
  14. 8.
    Y. Osamura, H. F. Schaefer III, S. K. Gray, and W. H. Miller, Vinylidene: A shallow minimum on the C2H2 potential energy surface. Static and dynamical considerations, to be published.Google Scholar
  15. 9.
    W. H. Miller, Unified statistical model for “complex” and “direct” reaction mechanisms, J. Chem. Phys. 65: 2216 (1976).CrossRefGoogle Scholar
  16. 10.
    See, for example, (a) S. A. Adelman and J. D. Doll, Generalized Langevin equation approach for atom-solid surface scattering: Collinear atom/harmonic chain model, J. Chem. Phys. 61: 4242 (1974).CrossRefGoogle Scholar
  17. S. A. Adelman and J. D. Doll, Generalized Langevin equation approach for atom-solid surface scattering: General formulation for classical scattering of harmonic solids, J. Chem. Phys. 64: 2375 (1976).CrossRefGoogle Scholar
  18. (b).
    M. Shugard, J. C. Tully, and A. Nitzan, Dynamics of gas-solid interactions: Calculations of energy transfer and sticking, J. Chem. Phys. 66: 2534 (1977).CrossRefGoogle Scholar
  19. 11.
    H. Goldstein, “Classical Mechanics”, Addison-Wesley, Reading, MA (1950), p. 288.Google Scholar
  20. 12.
    Ibid., pp. 237-247.Google Scholar
  21. 13.
    See, for example, M. L. Goldberger and K. M. Watson, “Collision Theory” Wiley, New York (1964), p. 46.Google Scholar
  22. 14.
    Ibid., p. 48.Google Scholar
  23. 15.
    See, for example, the presentation by W. H. Miller, Importance of nonseparability in quantum mechanical transition state theory, Acc. Chem. Res. 9: 306 (1976).CrossRefGoogle Scholar
  24. 16.
    J. C. Light, Statistical theory of bimolecular exchange reactions, Disc. Faraday Soc. 44: 14 (1967).CrossRefGoogle Scholar
  25. 17.
    E. E. Nikitin, “Theory of Elementary Atomic and Molecular Processes in Gases”, Oxford University Press, New York (1974), p. 391.Google Scholar
  26. 18.
    See, for example, P. J. Robinson and K. A. Holbrook, “Unimolecular Reactions”, Wiley, New York (1972), p. 53.Google Scholar
  27. 19.
    R. N. Porter and M. Karplus, Potential energy surface for H3, J. Chem. Phys. 40: 1105 (1964).CrossRefGoogle Scholar
  28. 20.
    S. Chapman, S. M. Hornstein, and W. H. Miller, Accuracy of transition state theory for the threshold of chemical reactions with activation energy. Collinear and three-dimensional H + H2, J. Amer. Chem. Soc. 97: 892 (1975).CrossRefGoogle Scholar
  29. 21.
    E. Pollak and P. Pechukas, Unified statistical model for “complex” and “direct” reaction mechanics: A test of the collinear H + H2 exchange reaction, J. Chem. Phys. 70: 325 (1979).CrossRefGoogle Scholar
  30. 22.
    B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem. 83: 1052 (1979).CrossRefGoogle Scholar
  31. B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem. 83: 3058(E) (1979).Google Scholar
  32. 23.
    For examples of applications of the unified statistical model employing this kind of ad hoc quantization, see B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules, J. Chem. Phys. 83: 1079 (1979).CrossRefGoogle Scholar
  33. B. C. Garrett and D. G. Truhlar, Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules, J. Chem. Phys. 84: 682(E) (1980).Google Scholar
  34. B. C. Garrett and D. G. Truhlar, Application of variational transition state theory and the unified statistical model to H + Cl2 → HC1 + Cl, J. Phys. Chem. 84: 1749 (1980).CrossRefGoogle Scholar
  35. B. C. Garrett, D. G. Truhlar, R. S. Grev, and R. B. Walker, Comparison of variational transition state theory and the unified statistical theory with vibrationally adiabatic transmission coefficients to accurate collinear rate constants for T + HD → TH + D, J. Chem. Phys. 73: 235 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • William H. Miller
    • 1
  1. 1.Department of Chemistry, and Materials and Molecular Research Division, Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations